Beginner's Guide for Caffe2DML users


Layers supported in Caffe2DML

Caffe2DML to be as compatible with the Caffe specification as possible. The main differences are given below along with the usage guide that mirrors the Caffe specification.

Vision Layers

Convolution Layer

Invokes nn/layers/conv2d_builtin.dml or nn/layers/conv2d_depthwise.dml layer.

Required Parameters:

Optional Parameters:

Parameters that are ignored:

Sample Usage:

layer {
    name: "conv1"
    type: "Convolution"
    bottom: "data"
    top: "conv1"
    # learning rate and decay multipliers for the filters
    param { lr_mult: 1 decay_mult: 1 }
    # learning rate and decay multipliers for the biases
    param { lr_mult: 2 decay_mult: 0 }
    convolution_param {
      num_output: 96     # learn 96 filters
      kernel_size: 11    # each filter is 11x11
      stride: 4          # step 4 pixels between each filter application
      weight_filler {
        type: "xavier" # initialize the filters from a Gaussian
      }
      bias_filler {
        type: "constant" # initialize the biases to zero (0)
        value: 0
      }
    }
  }

Pooling Layer

Invokes nn/layers/max_pool2d_builtin.dml layer.

Required Parameters:

Optional Parameters:

Sample Usage:

layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3 # pool over a 3x3 region
    stride: 2      # step two pixels (in the bottom blob) between pooling regions
  }
}

Deconvolution Layer

Invokes nn/layers/conv2d_transpose.dml or nn/layers/conv2d_transpose_depthwise.dml layer.

Required Parameters:

Optional Parameters:

Parameters that are ignored:

Sample Usage:

layer {
  name: "upconv_d5c_u4a"
  type: "Deconvolution"
  bottom: "u5d"
  top: "u4a"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 190
    bias_term: false
    pad: 1
    kernel_size: 4
    group: 190
    stride: 2
    weight_filler {
      type: "bilinear"
    }
  }
}

Recurrent Layers

RNN Layer

In a simple RNN, the output of the previous timestep is fed back in as an additional input at the current timestep.

Invokes nn/layers/rnn.dml layer.

Required Parameters:

Sample Usage:

layer {
        top: "rnn_1"
        recurrent_param {
                return_sequences: false
                num_output: 32
        }
        type: "RNN"
        name: "rnn_1"
        bottom: "rnn_1_input"
}

LSTM Layer

In an LSTM, an internal cell state is maintained, additive interactions operate over the cell state at each timestep, and some amount of this cell state is exposed as output at each timestep. Additionally, the output of the previous timestep is fed back in as an additional input at the current timestep.

Invokes nn/layers/lstm.dml layer.

Required Parameters:

Sample Usage:

layer {
        top: "lstm_1"
        recurrent_param {
                return_sequences: false
                num_output: 32
        }
        type: "LSTM"
        name: "lstm_1"
        bottom: "lstm_1_input"
}

Common Layers

Inner Product / Fully Connected Layer

Invokes nn/layers/affine.dml layer.

Required Parameters:

Parameters that are ignored:

Sample Usage:

layer {
  name: "fc8"
  type: "InnerProduct"
  # learning rate and decay multipliers for the weights
  param { lr_mult: 1 decay_mult: 1 }
  # learning rate and decay multipliers for the biases
  param { lr_mult: 2 decay_mult: 0 }
  inner_product_param {
    num_output: 1000
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
  bottom: "fc7"
  top: "fc8"
}

Dropout Layer

Invokes nn/layers/dropout.dml layer.

Optional Parameters:

Sample Usage:

layer {
  name: "drop1"
  type: "Dropout"
  bottom: "relu3"
  top: "drop1"
  dropout_param {
    dropout_ratio: 0.5
  }
}

Normalization Layers

BatchNorm Layer

This is used in combination with Scale layer.

Invokes nn/layers/batch_norm2d.dml layer.

Optional Parameters:

Parameters that are ignored:

Sample Usage:

layer {
	bottom: "conv1"
	top: "conv1"
	name: "bn_conv1"
	type: "BatchNorm"
	batch_norm_param {
		use_global_stats: true
	}
}
layer {
	bottom: "conv1"
	top: "conv1"
	name: "scale_conv1"
	type: "Scale"
	scale_param {
		bias_term: true
	}
}

Activation / Neuron Layers

In general, activation / Neuron layers are element-wise operators, taking one bottom blob and producing one top blob of the same size. In the layers below, we will ignore the input and out sizes as they are identical.

ReLU / Rectified-Linear Layer

Invokes nn/layers/relu.dml layer.

Parameters that are ignored:

Sample Usage:

layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}

TanH Layer

Invokes nn/layers/tanh.dml layer.

Sample Usage:

layer {
  name: "tanh1"
  type: "TanH"
  bottom: "conv1"
  top: "conv1"
}

Sigmoid Layer

Invokes nn/layers/sigmoid.dml layer.

Sample Usage:

layer {
  name: "sigmoid1"
  type: "Sigmoid"
  bottom: "conv1"
  top: "conv1"
}

Threshold Layer

Computes X > threshold

Parameters that are ignored:

Sample Usage:

layer {
  name: "threshold1"
  type: "Threshold"
  bottom: "conv1"
  top: "conv1"
}

Utility Layers

Eltwise Layer

Element-wise operations such as product or sum between two blobs.

Parameters that are ignored:

Sample Usage:

layer {
	bottom: "res2a_branch1"
	bottom: "res2a_branch2c"
	top: "res2a"
	name: "res2a"
	type: "Eltwise"
}

Concat Layer

Inputs:

Outputs:

Optional Parameters:

Sample Usage:

layer {
  name: "concat_d5cc_u5a-b"
  type: "Concat"
  bottom: "u5a"
  bottom: "d5c"
  top: "u5b"
}

Softmax Layer

Invokes nn/layers/softmax.dml layer.

Computes the forward pass for a softmax classifier. The inputs are interpreted as unnormalized, log-probabilities for each of N examples, and the softmax function transforms them to normalized probabilities.

This can be interpreted as a generalization of the sigmoid function to multiple classes.

probs_ij = e^scores_ij / sum(e^scores_i)

Parameters that are ignored:

Sample Usage:

layer {
  name: "sm"
  type: "Softmax"
  bottom: "score"
  top: "sm"
}

Loss Layers

Loss drives learning by comparing an output to a target and assigning cost to minimize. The loss itself is computed by the forward pass and the gradient w.r.t. to the loss is computed by the backward pass.

Softmax with Loss Layer

The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It’s conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient.

Invokes nn/layers/softmax.dml and nn/layers/cross_entropy_loss.dml for classification problems.

For image segmentation problems, invokes nn/layers/softmax2d_loss.dml layer.

Sample Usage:

layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}

Euclidean layer

The Euclidean loss layer computes the sum of squares of differences of its two inputs.

Invokes nn/layers/l2_loss.dml layer.

Sample Usage:

layer {
  name: "loss"
  type: "EuclideanLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}

Frequently asked questions

What is the purpose of Caffe2DML API ?

Most deep learning experts are more likely to be familiar with the Caffe’s specification rather than DML language. For these users, the Caffe2DML API reduces the learning curve to using SystemML. Instead of requiring the users to write a DML script for training, fine-tuning and testing the model, Caffe2DML takes as an input a network and solver specified in the Caffe specification and automatically generates the corresponding DML.

With Caffe2DML, does SystemML now require Caffe to be installed ?

Absolutely not. We only support Caffe’s API for convenience of the user as stated above. Since the Caffe’s API is specified in the protobuf format, we are able to generate the java parser files and donot require Caffe to be installed. This is also true for Tensorboard feature of Caffe2DML.

Dml.g4      ---> antlr  ---> DmlLexer.java, DmlListener.java, DmlParser.java ---> parse foo.dml
caffe.proto ---> protoc ---> target/generated-sources/caffe/Caffe.java       ---> parse caffe_network.proto, caffe_solver.proto 

Again, the SystemML engine doesnot invoke (or depend on) Caffe for any of its runtime operators. Since the grammar files for the respective APIs (i.e. caffe.proto) are used by SystemML, we include their licenses in our jar files.

How can I speedup the training with Caffe2DML ?

caffe2dmlObject.setConfigProperty("sysml.native.blas", "auto")
caffe2dmlObject.setConfigProperty("sysml.codegen.enabled", "true").setConfigProperty("sysml.codegen.plancache", "true")

How to enable GPU support in Caffe2DML ?

To be consistent with other mllearn algorithms, we recommend that you use following method instead of setting the solver_mode in solver file.

# The below method tells SystemML optimizer to use a GPU-enabled instruction if the operands fit in the GPU memory 
caffe2dmlObject.setGPU(True)
# The below method tells SystemML optimizer to always use a GPU-enabled instruction irrespective of the memory requirement
caffe2dmlObject.setForceGPU(True)

What is lr_policy in the solver specification ?

The parameter lr_policy specifies the learning rate decay policy. Caffe2DML supports following policies:

The parameters base_lr and lr_policy are required and other parameters are optional:

lr_policy: "step" # learning rate policy: drop the learning rate in "steps"
                  # by a factor of gamma every stepsize iterations (required)
base_lr: 0.01     # begin training at a learning rate of 0.01 (required)
gamma: 0.95       # drop the learning rate by the given factor (optional, default value: 0.95)
stepsize: 100000  # drop the learning rate every 100K iterations (optional, default value: 100000)
power: 0.75       # (optional, default value: 0.75)

How do I regularize weight matrices in the neural network ?

The user can specify the type of regularization using the parameter regularization_type in the solver file. The valid values are L2 (default) and L1. Caffe2DML then invokes the backward function of the layers nn/layers/l2_reg.dml and nn/layers/l1_reg.dml respectively. The regularation strength is set using the property weight_decay in the solver file:

regularization_type: "L2"
weight_decay: 5e-4

Like learning rate, you can customize the regularation strength of a given layer by specifying the property decay_mult in the network file:

param { lr_mult: 1 decay_mult: 1 }

How to set batch size ?

Batch size is set in data_param of the Data layer:

layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  data_param {
    source: "mnist_train"
    batch_size: 64
    backend: LMDB
  }
}

How to set maximum number of iterations for training ?

The maximum number of iterations can be set in the solver specification

# The maximum number of iterations
max_iter: 2000

How to set the size of the validation dataset ?

The size of the validation dataset is determined by the parameters test_iter and the batch size. For example: If the batch size is 64 and test_iter is 10, then the validation size is 640. This setting generates following DML code internally:

num_images = nrow(y_full)
BATCH_SIZE = 64
num_validation = 10 * BATCH_SIZE
X = X_full[(num_validation+1):num_images,]; y = y_full[(num_validation+1):num_images,]
X_val = X_full[1:num_validation,]; y_val = y_full[1:num_validation,]
num_images = nrow(y)

How to monitor loss via command-line ?

To monitor loss, please set following parameters in the solver specification

# Display training loss and accuracy every 100 iterations
display: 100
# Carry out validation every 500 training iterations and display validation loss and accuracy.
test_iter: 10
test_interval: 500

How to pass a single jpeg image to Caffe2DML for prediction ?

To convert a jpeg into NumPy matrix, you can use the pillow package and SystemML’s convertImageToNumPyArr utility function. The below pyspark code demonstrates the usage:

from PIL import Image
import systemml as sml
from systemml.mllearn import Caffe2DML
img_shape = (3, 224, 224)
input_image = sml.convertImageToNumPyArr(Image.open(img_file_path), img_shape=img_shape)
resnet = Caffe2DML(sqlCtx, solver='ResNet_50_solver.proto', weights='ResNet_50_pretrained_weights', input_shape=img_shape)
resnet.predict(input_image)

How to prepare a directory of jpeg images for training with Caffe2DML ?

The below pyspark code assumes that the input dataset has 2 labels cat and dogs and the filename has these labels as prefix. We iterate through the directory and convert each jpeg image into pyspark.ml.linalg.Vector using pyspark. These vectors are stored as DataFrame and randomized using Spark SQL’s orderBy(rand()) function. The DataFrame is then saved in parquet format to reduce the cost of preprocessing for repeated training.

from systemml.mllearn import Caffe2DML
from pyspark.sql import SQLContext
import numpy as np
import urllib, os, scipy.ndimage
from pyspark.ml.linalg import Vectors
from pyspark import StorageLevel
import systemml as sml
from pyspark.sql.functions import rand 
# ImageNet specific parameters
img_shape = (3, 224, 224)
train_dir = '/home/biuser/dogs_vs_cats/train'
def getLabelFeatures(filename):
	from PIL import Image
	vec = Vectors.dense(sml.convertImageToNumPyArr(Image.open(os.path.join(train_dir, filename)), img_shape=img_shape)[0,:])
	if filename.lower().startswith('cat'):
		return (1, vec)
	elif filename.lower().startswith('dog'):
		return (2, vec)
	else:
		raise ValueError('Expected the filename to start with either cat or dog')
list_jpeg_files = os.listdir(train_dir)
# 10 files per partition
train_df = sc.parallelize(list_jpeg_files, int(len(list_jpeg_files)/10)).map(lambda filename : getLabelFeatures(filename)).toDF(['label', 'features']).orderBy(rand())
# Optional: but helps seperates conversion-related from training
# Alternatively, this dataframe can be passed directly to `caffe2dml_model.fit(train_df)`
train_df.write.parquet('kaggle-cats-dogs.parquet')

An alternative way to load images into a PySpark DataFrame for prediction, is to use MLLib’s LabeledPoint class:

list_jpeg_files = os.listdir(train_dir)
train_df = sc.parallelize(list_jpeg_files, int(len(list_jpeg_files)/10)).map(lambda filename : LabeledPoint(0, sml.convertImageToNumPyArr(Image.open(os.path.join(train_dir, filename)), img_shape=img_shape)[0,:])).toDF().select('features')
# Note: convertVectorColumnsToML has an additional serialization cost
train_df = MLUtils.convertVectorColumnsToML(train_df)

Can I use Caffe2DML via Scala ?

Though we recommend using Caffe2DML via its Python interfaces, it is possible to use it by creating an object of the class org.apache.sysml.api.dl.Caffe2DML. It is important to note that Caffe2DML’s scala API is packaged in systemml-*-extra.jar.

How can I get summary information of my network ?

lenet.summary()

Output:

+-----+---------------+--------------+------------+---------+-----------+---------+
| Name|           Type|        Output|      Weight|     Bias|        Top|   Bottom|
+-----+---------------+--------------+------------+---------+-----------+---------+
|mnist|           Data| (, 1, 28, 28)|            |         |mnist,mnist|         |
|conv1|    Convolution|(, 32, 28, 28)|   [32 X 25]| [32 X 1]|      conv1|    mnist|
|relu1|           ReLU|(, 32, 28, 28)|            |         |      relu1|    conv1|
|pool1|        Pooling|(, 32, 14, 14)|            |         |      pool1|    relu1|
|conv2|    Convolution|(, 64, 14, 14)|  [64 X 800]| [64 X 1]|      conv2|    pool1|
|relu2|           ReLU|(, 64, 14, 14)|            |         |      relu2|    conv2|
|pool2|        Pooling|  (, 64, 7, 7)|            |         |      pool2|    relu2|
|  ip1|   InnerProduct| (, 512, 1, 1)|[3136 X 512]|[1 X 512]|        ip1|    pool2|
|relu3|           ReLU| (, 512, 1, 1)|            |         |      relu3|      ip1|
|drop1|        Dropout| (, 512, 1, 1)|            |         |      drop1|    relu3|
|  ip2|   InnerProduct|  (, 10, 1, 1)|  [512 X 10]| [1 X 10]|        ip2|    drop1|
| loss|SoftmaxWithLoss|  (, 10, 1, 1)|            |         |       loss|ip2,mnist|
+-----+---------------+--------------+------------+---------+-----------+---------+

How can I view the script generated by Caffe2DML ?

To view the generated DML script (and additional debugging information), please set the debug parameter to True.

lenet.set(debug=True)

Output:

001|debug = TRUE
002|source("nn/layers/softmax.dml") as softmax
003|source("nn/layers/cross_entropy_loss.dml") as cross_entropy_loss
004|source("nn/layers/conv2d_builtin.dml") as conv2d_builtin
005|source("nn/layers/relu.dml") as relu
006|source("nn/layers/max_pool2d_builtin.dml") as max_pool2d_builtin
007|source("nn/layers/affine.dml") as affine
008|source("nn/layers/dropout.dml") as dropout
009|source("nn/optim/sgd_momentum.dml") as sgd_momentum
010|source("nn/layers/l2_reg.dml") as l2_reg
011|X_full_path = ifdef($X, " ")
012|X_full = read(X_full_path)
013|y_full_path = ifdef($y, " ")
014|y_full = read(y_full_path)
015|num_images = nrow(y_full)
016|# Convert to one-hot encoding (Assumption: 1-based labels)
017|y_full = table(seq(1,num_images,1), y_full, num_images, 10)
018|weights = ifdef($weights, " ")
019|# Initialize the layers and solvers
020|X_full = X_full * 0.00390625
021|BATCH_SIZE = 64
022|[conv1_weight,conv1_bias] = conv2d_builtin::init(32,1,5,5)
023|[conv2_weight,conv2_bias] = conv2d_builtin::init(64,32,5,5)
024|[ip1_weight,ip1_bias] = affine::init(3136,512)
025|[ip2_weight,ip2_bias] = affine::init(512,10)
026|conv1_weight_v = sgd_momentum::init(conv1_weight)
027|conv1_bias_v = sgd_momentum::init(conv1_bias)
028|conv2_weight_v = sgd_momentum::init(conv2_weight)
029|conv2_bias_v = sgd_momentum::init(conv2_bias)
030|ip1_weight_v = sgd_momentum::init(ip1_weight)
031|ip1_bias_v = sgd_momentum::init(ip1_bias)
032|ip2_weight_v = sgd_momentum::init(ip2_weight)
033|ip2_bias_v = sgd_momentum::init(ip2_bias)
034|num_validation = 10 * BATCH_SIZE
035|# Sanity check to ensure that validation set is not too large
036|if(num_validation > ceil(0.3 * num_images)) {
037|    max_test_iter = floor(ceil(0.3 * num_images) / BATCH_SIZE)
038|    stop("Too large validation size. Please reduce test_iter to " + max_test_iter)
039|}
040|X = X_full[(num_validation+1):num_images,]; y = y_full[(num_validation+1):num_images,]; X_val = X_full[1:num_validation,]; y_val = y_full[1:num_validation,]; num_images = nrow(y)
041|num_iters_per_epoch = ceil(num_images / BATCH_SIZE)
042|max_epochs = ceil(2000 / num_iters_per_epoch)
043|iter = 0
044|lr = 0.01
045|for(e in 1:max_epochs) {
046|    for(i in 1:num_iters_per_epoch) {
047|            beg = ((i-1) * BATCH_SIZE) %% num_images + 1; end = min(beg + BATCH_SIZE - 1, num_images); Xb = X[beg:end,]; yb = y[beg:end,];
048|            iter = iter + 1
049|            # Perform forward pass
050|            [out3,ignoreHout_3,ignoreWout_3] = conv2d_builtin::forward(Xb,conv1_weight,conv1_bias,1,28,28,5,5,1,1,2,2)
051|            out4 = relu::forward(out3)
052|            [out5,ignoreHout_5,ignoreWout_5] = max_pool2d_builtin::forward(out4,32,28,28,2,2,2,2,0,0)
053|            [out6,ignoreHout_6,ignoreWout_6] = conv2d_builtin::forward(out5,conv2_weight,conv2_bias,32,14,14,5,5,1,1,2,2)
054|            out7 = relu::forward(out6)
055|            [out8,ignoreHout_8,ignoreWout_8] = max_pool2d_builtin::forward(out7,64,14,14,2,2,2,2,0,0)
056|            out9 = affine::forward(out8,ip1_weight,ip1_bias)
057|            out10 = relu::forward(out9)
058|            [out11,mask11] = dropout::forward(out10,0.5,-1)
059|            out12 = affine::forward(out11,ip2_weight,ip2_bias)
060|            out13 = softmax::forward(out12)
061|            # Perform backward pass
062|            dProbs = cross_entropy_loss::backward(out13,yb); dOut13 = softmax::backward(dProbs,out12); dOut13_12 = dOut13; dOut13_2 = dOut13;
063|            [dOut12,ip2_dWeight,ip2_dBias] = affine::backward(dOut13_12,out11,ip2_weight,ip2_bias); dOut12_11 = dOut12;
064|            dOut11 = dropout::backward(dOut12_11,out10,0.5,mask11); dOut11_10 = dOut11;
065|            dOut10 = relu::backward(dOut11_10,out9); dOut10_9 = dOut10;
066|            [dOut9,ip1_dWeight,ip1_dBias] = affine::backward(dOut10_9,out8,ip1_weight,ip1_bias); dOut9_8 = dOut9;
067|            dOut8 = max_pool2d_builtin::backward(dOut9_8,7,7,out7,64,14,14,2,2,2,2,0,0); dOut8_7 = dOut8;
068|            dOut7 = relu::backward(dOut8_7,out6); dOut7_6 = dOut7;
069|            [dOut6,conv2_dWeight,conv2_dBias] = conv2d_builtin::backward(dOut7_6,14,14,out5,conv2_weight,conv2_bias,32,14,14,5,5,1,1,2,2); dOut6_5 = dOut6;
070|            dOut5 = max_pool2d_builtin::backward(dOut6_5,14,14,out4,32,28,28,2,2,2,2,0,0); dOut5_4 = dOut5;
071|            dOut4 = relu::backward(dOut5_4,out3); dOut4_3 = dOut4;
072|            [dOut3,conv1_dWeight,conv1_dBias] = conv2d_builtin::backward(dOut4_3,28,28,Xb,conv1_weight,conv1_bias,1,28,28,5,5,1,1,2,2); dOut3_2 = dOut3;
073|            # Update the parameters
074|            conv1_dWeight_reg = l2_reg::backward(conv1_weight, 5.000000237487257E-4)
075|            conv1_dWeight = conv1_dWeight + conv1_dWeight_reg
076|            [conv1_weight,conv1_weight_v] = sgd_momentum::update(conv1_weight,conv1_dWeight,(lr * 1.0),0.8999999761581421,conv1_weight_v)
077|            [conv1_bias,conv1_bias_v] = sgd_momentum::update(conv1_bias,conv1_dBias,(lr * 2.0),0.8999999761581421,conv1_bias_v)
078|            conv2_dWeight_reg = l2_reg::backward(conv2_weight, 5.000000237487257E-4)
079|            conv2_dWeight = conv2_dWeight + conv2_dWeight_reg
080|            [conv2_weight,conv2_weight_v] = sgd_momentum::update(conv2_weight,conv2_dWeight,(lr * 1.0),0.8999999761581421,conv2_weight_v)
081|            [conv2_bias,conv2_bias_v] = sgd_momentum::update(conv2_bias,conv2_dBias,(lr * 2.0),0.8999999761581421,conv2_bias_v)
082|            ip1_dWeight_reg = l2_reg::backward(ip1_weight, 5.000000237487257E-4)
083|            ip1_dWeight = ip1_dWeight + ip1_dWeight_reg
084|            [ip1_weight,ip1_weight_v] = sgd_momentum::update(ip1_weight,ip1_dWeight,(lr * 1.0),0.8999999761581421,ip1_weight_v)
085|            [ip1_bias,ip1_bias_v] = sgd_momentum::update(ip1_bias,ip1_dBias,(lr * 2.0),0.8999999761581421,ip1_bias_v)
086|            ip2_dWeight_reg = l2_reg::backward(ip2_weight, 5.000000237487257E-4)
087|            ip2_dWeight = ip2_dWeight + ip2_dWeight_reg
088|            [ip2_weight,ip2_weight_v] = sgd_momentum::update(ip2_weight,ip2_dWeight,(lr * 1.0),0.8999999761581421,ip2_weight_v)
089|            [ip2_bias,ip2_bias_v] = sgd_momentum::update(ip2_bias,ip2_dBias,(lr * 2.0),0.8999999761581421,ip2_bias_v)
090|            # Compute training loss & accuracy
091|            if(iter  %% 100 == 0) {
092|                    loss = 0
093|                    accuracy = 0
094|                    tmp_loss = cross_entropy_loss::forward(out13,yb)
095|                    loss = loss + tmp_loss
096|                    true_yb = rowIndexMax(yb)
097|                    predicted_yb = rowIndexMax(out13)
098|                    accuracy = mean(predicted_yb == true_yb)*100
099|                    training_loss = loss
100|                    training_accuracy = accuracy
101|                    print("Iter:" + iter + ", training loss:" + training_loss + ", training accuracy:" + training_accuracy)
102|                    if(debug) {
103|                            num_rows_error_measures = min(10, ncol(yb))
104|                            error_measures = matrix(0, rows=num_rows_error_measures, cols=5)
105|                            for(class_i in 1:num_rows_error_measures) {
106|                                    tp = sum( (true_yb == predicted_yb) * (true_yb == class_i) )
107|                                    tp_plus_fp = sum( (predicted_yb == class_i) )
108|                                    tp_plus_fn = sum( (true_yb == class_i) )
109|                                    precision = tp / tp_plus_fp
110|                                    recall = tp / tp_plus_fn
111|                                    f1Score = 2*precision*recall / (precision+recall)
112|                                    error_measures[class_i,1] = class_i
113|                                    error_measures[class_i,2] = precision
114|                                    error_measures[class_i,3] = recall
115|                                    error_measures[class_i,4] = f1Score
116|                                    error_measures[class_i,5] = tp_plus_fn
117|                            }
118|                            print("class    \tprecision\trecall  \tf1-score\tnum_true_labels\n" + toString(error_measures, decimal=7, sep="\t"))
119|                    }
120|            }
121|            # Compute validation loss & accuracy
122|            if(iter  %% 500 == 0) {
123|                    loss = 0
124|                    accuracy = 0
125|                    validation_loss = 0
126|                    validation_accuracy = 0
127|                    for(iVal in 1:num_iters_per_epoch) {
128|                            beg = ((iVal-1) * BATCH_SIZE) %% num_validation + 1; end = min(beg + BATCH_SIZE - 1, num_validation); Xb = X_val[beg:end,]; yb = y_val[beg:end,];
129|                            # Perform forward pass
130|                            [out3,ignoreHout_3,ignoreWout_3] = conv2d_builtin::forward(Xb,conv1_weight,conv1_bias,1,28,28,5,5,1,1,2,2)
131|                            out4 = relu::forward(out3)
132|                            [out5,ignoreHout_5,ignoreWout_5] = max_pool2d_builtin::forward(out4,32,28,28,2,2,2,2,0,0)
133|                            [out6,ignoreHout_6,ignoreWout_6] = conv2d_builtin::forward(out5,conv2_weight,conv2_bias,32,14,14,5,5,1,1,2,2)
134|                            out7 = relu::forward(out6)
135|                            [out8,ignoreHout_8,ignoreWout_8] = max_pool2d_builtin::forward(out7,64,14,14,2,2,2,2,0,0)
136|                            out9 = affine::forward(out8,ip1_weight,ip1_bias)
137|                            out10 = relu::forward(out9)
138|                            [out11,mask11] = dropout::forward(out10,0.5,-1)
139|                            out12 = affine::forward(out11,ip2_weight,ip2_bias)
140|                            out13 = softmax::forward(out12)
141|                            tmp_loss = cross_entropy_loss::forward(out13,yb)
142|                            loss = loss + tmp_loss
143|                            true_yb = rowIndexMax(yb)
144|                            predicted_yb = rowIndexMax(out13)
145|                            accuracy = mean(predicted_yb == true_yb)*100
146|                            validation_loss = validation_loss + loss
147|                            validation_accuracy = validation_accuracy + accuracy
148|                    }
149|                    validation_accuracy = validation_accuracy / num_iters_per_epoch
150|                    print("Iter:" + iter + ", validation loss:" + validation_loss + ", validation accuracy:" + validation_accuracy)
151|            }
152|    }
153|    # Learning rate
154|    lr = (0.009999999776482582 * 0.949999988079071^e)
155|}

Iter:100, training loss:0.24014199350958168, training accuracy:87.5
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       3.0000000
2.0000000       1.0000000       1.0000000       1.0000000       8.0000000
3.0000000       0.8888889       0.8888889       0.8888889       9.0000000
4.0000000       0.7500000       0.7500000       0.7500000       4.0000000
5.0000000       0.7500000       1.0000000       0.8571429       3.0000000
6.0000000       0.8333333       1.0000000       0.9090909       5.0000000
7.0000000       1.0000000       1.0000000       1.0000000       8.0000000
8.0000000       0.8571429       0.7500000       0.8000000       8.0000000
9.0000000       1.0000000       0.5714286       0.7272727       7.0000000
10.0000000      0.7272727       0.8888889       0.8000000       9.0000000

Iter:200, training loss:0.09555593867171894, training accuracy:98.4375
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       10.0000000
2.0000000       1.0000000       1.0000000       1.0000000       3.0000000
3.0000000       1.0000000       1.0000000       1.0000000       9.0000000
4.0000000       1.0000000       1.0000000       1.0000000       6.0000000
5.0000000       1.0000000       1.0000000       1.0000000       7.0000000
6.0000000       1.0000000       1.0000000       1.0000000       8.0000000
7.0000000       1.0000000       0.6666667       0.8000000       3.0000000
8.0000000       1.0000000       1.0000000       1.0000000       9.0000000
9.0000000       0.8571429       1.0000000       0.9230769       6.0000000
10.0000000      1.0000000       1.0000000       1.0000000       3.0000000

Iter:300, training loss:0.058686794512570216, training accuracy:98.4375
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       6.0000000
2.0000000       1.0000000       1.0000000       1.0000000       9.0000000
3.0000000       1.0000000       1.0000000       1.0000000       4.0000000
4.0000000       1.0000000       1.0000000       1.0000000       8.0000000
5.0000000       1.0000000       1.0000000       1.0000000       6.0000000
6.0000000       1.0000000       0.8750000       0.9333333       8.0000000
7.0000000       1.0000000       1.0000000       1.0000000       5.0000000
8.0000000       1.0000000       1.0000000       1.0000000       2.0000000
9.0000000       0.8888889       1.0000000       0.9411765       8.0000000
10.0000000      1.0000000       1.0000000       1.0000000       8.0000000

Iter:400, training loss:0.08742103541529415, training accuracy:96.875
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       6.0000000
2.0000000       0.8000000       1.0000000       0.8888889       8.0000000
3.0000000       1.0000000       0.8333333       0.9090909       6.0000000
4.0000000       1.0000000       1.0000000       1.0000000       4.0000000
5.0000000       1.0000000       1.0000000       1.0000000       4.0000000
6.0000000       1.0000000       1.0000000       1.0000000       6.0000000
7.0000000       1.0000000       1.0000000       1.0000000       7.0000000
8.0000000       1.0000000       1.0000000       1.0000000       6.0000000
9.0000000       1.0000000       1.0000000       1.0000000       4.0000000
10.0000000      1.0000000       0.9230769       0.9600000       13.0000000

Iter:500, training loss:0.05873836245880005, training accuracy:98.4375
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       3.0000000
2.0000000       1.0000000       1.0000000       1.0000000       5.0000000
3.0000000       1.0000000       1.0000000       1.0000000       6.0000000
4.0000000       1.0000000       1.0000000       1.0000000       9.0000000
5.0000000       1.0000000       1.0000000       1.0000000       4.0000000
6.0000000       1.0000000       0.8571429       0.9230769       7.0000000
7.0000000       0.8571429       1.0000000       0.9230769       6.0000000
8.0000000       1.0000000       1.0000000       1.0000000       9.0000000
9.0000000       1.0000000       1.0000000       1.0000000       10.0000000
10.0000000      1.0000000       1.0000000       1.0000000       5.0000000

Iter:500, validation loss:260.1580978627665, validation accuracy:96.43954918032787
Iter:600, training loss:0.07584116043829209, training accuracy:98.4375
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       8.0000000
2.0000000       1.0000000       1.0000000       1.0000000       4.0000000
3.0000000       1.0000000       1.0000000       1.0000000       4.0000000
4.0000000       1.0000000       1.0000000       1.0000000       4.0000000
5.0000000       1.0000000       1.0000000       1.0000000       5.0000000
6.0000000       1.0000000       1.0000000       1.0000000       8.0000000
7.0000000       1.0000000       1.0000000       1.0000000       8.0000000
8.0000000       1.0000000       0.9230769       0.9600000       13.0000000
9.0000000       1.0000000       1.0000000       1.0000000       5.0000000
10.0000000      0.8333333       1.0000000       0.9090909       5.0000000

Iter:700, training loss:0.07973166944626336, training accuracy:98.4375
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       5.0000000
2.0000000       1.0000000       1.0000000       1.0000000       4.0000000
3.0000000       1.0000000       1.0000000       1.0000000       6.0000000
4.0000000       1.0000000       1.0000000       1.0000000       4.0000000
5.0000000       1.0000000       1.0000000       1.0000000       5.0000000
6.0000000       1.0000000       1.0000000       1.0000000       6.0000000
7.0000000       1.0000000       1.0000000       1.0000000       10.0000000
8.0000000       0.8000000       1.0000000       0.8888889       4.0000000
9.0000000       1.0000000       1.0000000       1.0000000       8.0000000
10.0000000      1.0000000       0.9166667       0.9565217       12.0000000

Iter:800, training loss:0.0063778595034221855, training accuracy:100.0
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       9.0000000
2.0000000       1.0000000       1.0000000       1.0000000       6.0000000
3.0000000       1.0000000       1.0000000       1.0000000       7.0000000
4.0000000       1.0000000       1.0000000       1.0000000       7.0000000
5.0000000       1.0000000       1.0000000       1.0000000       4.0000000
6.0000000       1.0000000       1.0000000       1.0000000       9.0000000
7.0000000       1.0000000       1.0000000       1.0000000       6.0000000
8.0000000       1.0000000       1.0000000       1.0000000       8.0000000
9.0000000       1.0000000       1.0000000       1.0000000       2.0000000
10.0000000      1.0000000       1.0000000       1.0000000       6.0000000

Iter:900, training loss:0.019673112167879484, training accuracy:100.0
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       3.0000000
2.0000000       1.0000000       1.0000000       1.0000000       4.0000000
3.0000000       1.0000000       1.0000000       1.0000000       3.0000000
4.0000000       1.0000000       1.0000000       1.0000000       5.0000000
5.0000000       1.0000000       1.0000000       1.0000000       6.0000000
6.0000000       1.0000000       1.0000000       1.0000000       10.0000000
7.0000000       1.0000000       1.0000000       1.0000000       7.0000000
8.0000000       1.0000000       1.0000000       1.0000000       7.0000000
9.0000000       1.0000000       1.0000000       1.0000000       12.0000000
10.0000000      1.0000000       1.0000000       1.0000000       7.0000000

Iter:1000, training loss:0.06137978002508307, training accuracy:96.875
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       5.0000000
2.0000000       1.0000000       1.0000000       1.0000000       7.0000000
3.0000000       1.0000000       1.0000000       1.0000000       8.0000000
4.0000000       0.8333333       0.8333333       0.8333333       6.0000000
5.0000000       1.0000000       1.0000000       1.0000000       5.0000000
6.0000000       1.0000000       1.0000000       1.0000000       10.0000000
7.0000000       1.0000000       1.0000000       1.0000000       3.0000000
8.0000000       0.8888889       0.8888889       0.8888889       9.0000000
9.0000000       1.0000000       1.0000000       1.0000000       7.0000000
10.0000000      1.0000000       1.0000000       1.0000000       4.0000000

Iter:1000, validation loss:238.62301345198944, validation accuracy:97.02868852459017
Iter:1100, training loss:0.023325103696013115, training accuracy:100.0
class           precision       recall          f1-score        num_true_labels
1.0000000       1.0000000       1.0000000       1.0000000       4.0000000
2.0000000       1.0000000       1.0000000       1.0000000       10.0000000
3.0000000       1.0000000       1.0000000       1.0000000       6.0000000
4.0000000       1.0000000       1.0000000       1.0000000       4.0000000
5.0000000       1.0000000       1.0000000       1.0000000       2.0000000
6.0000000       1.0000000       1.0000000       1.0000000       10.0000000
7.0000000       1.0000000       1.0000000       1.0000000       7.0000000
8.0000000       1.0000000       1.0000000       1.0000000       6.0000000
9.0000000       1.0000000       1.0000000       1.0000000       9.0000000
10.0000000      1.0000000       1.0000000       1.0000000       6.0000000
...