Interface ClassificationSummary
- All Superinterfaces:
Serializable
- All Known Subinterfaces:
BinaryClassificationSummary
,BinaryLogisticRegressionSummary
,BinaryLogisticRegressionTrainingSummary
,BinaryRandomForestClassificationSummary
,BinaryRandomForestClassificationTrainingSummary
,FMClassificationSummary
,FMClassificationTrainingSummary
,LinearSVCSummary
,LinearSVCTrainingSummary
,LogisticRegressionSummary
,LogisticRegressionTrainingSummary
,MultilayerPerceptronClassificationSummary
,MultilayerPerceptronClassificationTrainingSummary
,RandomForestClassificationSummary
,RandomForestClassificationTrainingSummary
- All Known Implementing Classes:
BinaryLogisticRegressionSummaryImpl
,BinaryLogisticRegressionTrainingSummaryImpl
,BinaryRandomForestClassificationSummaryImpl
,BinaryRandomForestClassificationTrainingSummaryImpl
,FMClassificationSummaryImpl
,FMClassificationTrainingSummaryImpl
,LinearSVCSummaryImpl
,LinearSVCTrainingSummaryImpl
,LogisticRegressionSummaryImpl
,LogisticRegressionTrainingSummaryImpl
,MultilayerPerceptronClassificationSummaryImpl
,MultilayerPerceptronClassificationTrainingSummaryImpl
,RandomForestClassificationSummaryImpl
,RandomForestClassificationTrainingSummaryImpl
Abstraction for multiclass classification results for a given model.
-
Method Summary
Modifier and TypeMethodDescriptiondouble
accuracy()
Returns accuracy.double[]
Returns false positive rate for each label (category).double[]
Returns f1-measure for each label (category).double[]
fMeasureByLabel
(double beta) Returns f-measure for each label (category).labelCol()
Field in "predictions" which gives the true label of each instance (if available).double[]
labels()
Returns the sequence of labels in ascending order.double[]
Returns precision for each label (category).Field in "predictions" which gives the prediction of each class.Dataframe output by the model'stransform
method.double[]
Returns recall for each label (category).double[]
Returns true positive rate for each label (category).Field in "predictions" which gives the weight of each instance.double
Returns weighted false positive rate.double
Returns weighted averaged f1-measure.double
weightedFMeasure
(double beta) Returns weighted averaged f-measure.double
Returns weighted averaged precision.double
Returns weighted averaged recall.double
Returns weighted true positive rate.
-
Method Details
-
accuracy
double accuracy()Returns accuracy. (equals to the total number of correctly classified instances out of the total number of instances.)- Returns:
- (undocumented)
-
fMeasureByLabel
double[] fMeasureByLabel(double beta) Returns f-measure for each label (category). -
fMeasureByLabel
double[] fMeasureByLabel()Returns f1-measure for each label (category). -
falsePositiveRateByLabel
double[] falsePositiveRateByLabel()Returns false positive rate for each label (category). -
labelCol
String labelCol()Field in "predictions" which gives the true label of each instance (if available). -
labels
double[] labels()Returns the sequence of labels in ascending order. This order matches the order used in metrics which are specified as arrays over labels, e.g., truePositiveRateByLabel.Note: In most cases, it will be values {0.0, 1.0, ..., numClasses-1}, However, if the training set is missing a label, then all of the arrays over labels (e.g., from truePositiveRateByLabel) will be of length numClasses-1 instead of the expected numClasses.
- Returns:
- (undocumented)
-
precisionByLabel
double[] precisionByLabel()Returns precision for each label (category). -
predictionCol
String predictionCol()Field in "predictions" which gives the prediction of each class. -
predictions
Dataframe output by the model'stransform
method.- Returns:
- (undocumented)
-
recallByLabel
double[] recallByLabel()Returns recall for each label (category). -
truePositiveRateByLabel
double[] truePositiveRateByLabel()Returns true positive rate for each label (category). -
weightCol
String weightCol()Field in "predictions" which gives the weight of each instance. -
weightedFMeasure
double weightedFMeasure(double beta) Returns weighted averaged f-measure. -
weightedFMeasure
double weightedFMeasure()Returns weighted averaged f1-measure. -
weightedFalsePositiveRate
double weightedFalsePositiveRate()Returns weighted false positive rate. -
weightedPrecision
double weightedPrecision()Returns weighted averaged precision. -
weightedRecall
double weightedRecall()Returns weighted averaged recall. (equals to precision, recall and f-measure)- Returns:
- (undocumented)
-
weightedTruePositiveRate
double weightedTruePositiveRate()Returns weighted true positive rate. (equals to precision, recall and f-measure)- Returns:
- (undocumented)
-