Source code for pyspark.ml.image

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
.. attribute:: ImageSchema

    An attribute of this module that contains the instance of :class:`_ImageSchema`.

.. autoclass:: _ImageSchema
   :members:
"""

import sys
from typing import Any, Dict, List, NoReturn, cast
from functools import cached_property

import numpy as np

from pyspark.sql.types import Row, StructType, _create_row, _parse_datatype_json_string
from pyspark.sql import SparkSession

__all__ = ["ImageSchema"]


[docs]class _ImageSchema: """ Internal class for `pyspark.ml.image.ImageSchema` attribute. Meant to be private and not to be instantized. Use `pyspark.ml.image.ImageSchema` attribute to access the APIs of this class. """ @cached_property def imageSchema(self) -> StructType: """ Returns the image schema. Returns ------- :class:`StructType` with a single column of images named "image" (nullable) and having the same type returned by :meth:`columnSchema`. .. versionadded:: 2.3.0 """ from pyspark.core.context import SparkContext ctx = SparkContext._active_spark_context assert ctx is not None and ctx._jvm is not None jschema = getattr(ctx._jvm, "org.apache.spark.ml.image.ImageSchema").imageSchema() return cast(StructType, _parse_datatype_json_string(jschema.json())) @cached_property def ocvTypes(self) -> Dict[str, int]: """ Returns the OpenCV type mapping supported. Returns ------- dict a dictionary containing the OpenCV type mapping supported. .. versionadded:: 2.3.0 """ from pyspark.core.context import SparkContext ctx = SparkContext._active_spark_context assert ctx is not None and ctx._jvm is not None return dict(getattr(ctx._jvm, "org.apache.spark.ml.image.ImageSchema").javaOcvTypes()) @cached_property def columnSchema(self) -> StructType: """ Returns the schema for the image column. Returns ------- :class:`StructType` a schema for image column, ``struct<origin:string, height:int, width:int, nChannels:int, mode:int, data:binary>``. .. versionadded:: 2.4.0 """ from pyspark.core.context import SparkContext ctx = SparkContext._active_spark_context assert ctx is not None and ctx._jvm is not None jschema = getattr(ctx._jvm, "org.apache.spark.ml.image.ImageSchema").columnSchema() return cast(StructType, _parse_datatype_json_string(jschema.json())) @cached_property def imageFields(self) -> List[str]: """ Returns field names of image columns. Returns ------- list a list of field names. .. versionadded:: 2.3.0 """ from pyspark.core.context import SparkContext ctx = SparkContext._active_spark_context assert ctx is not None and ctx._jvm is not None return list(getattr(ctx._jvm, "org.apache.spark.ml.image.ImageSchema").imageFields()) @cached_property def undefinedImageType(self) -> str: """ Returns the name of undefined image type for the invalid image. .. versionadded:: 2.3.0 """ from pyspark.core.context import SparkContext ctx = SparkContext._active_spark_context assert ctx is not None and ctx._jvm is not None return getattr(ctx._jvm, "org.apache.spark.ml.image.ImageSchema").undefinedImageType()
[docs] def toNDArray(self, image: Row) -> np.ndarray: """ Converts an image to an array with metadata. Parameters ---------- image : :class:`Row` image: A row that contains the image to be converted. It should have the attributes specified in `ImageSchema.imageSchema`. Returns ------- :class:`numpy.ndarray` that is an image. .. versionadded:: 2.3.0 """ if not isinstance(image, Row): raise TypeError( "image argument should be pyspark.sql.types.Row; however, " "it got [%s]." % type(image) ) if any(not hasattr(image, f) for f in self.imageFields): raise ValueError( "image argument should have attributes specified in " "ImageSchema.imageSchema [%s]." % ", ".join(self.imageFields) ) height = image.height width = image.width nChannels = image.nChannels return np.ndarray( shape=(height, width, nChannels), dtype=np.uint8, buffer=image.data, strides=(width * nChannels, nChannels, 1), )
[docs] def toImage(self, array: np.ndarray, origin: str = "") -> Row: """ Converts an array with metadata to a two-dimensional image. Parameters ---------- array : :class:`numpy.ndarray` The array to convert to image. origin : str Path to the image, optional. Returns ------- :class:`Row` that is a two dimensional image. .. versionadded:: 2.3.0 """ if not isinstance(array, np.ndarray): raise TypeError( "array argument should be numpy.ndarray; however, it got [%s]." % type(array) ) if array.ndim != 3: raise ValueError("Invalid array shape") height, width, nChannels = array.shape ocvTypes = ImageSchema.ocvTypes if nChannels == 1: mode = ocvTypes["CV_8UC1"] elif nChannels == 3: mode = ocvTypes["CV_8UC3"] elif nChannels == 4: mode = ocvTypes["CV_8UC4"] else: raise ValueError("Invalid number of channels") data = bytearray(array.astype(dtype=np.uint8).ravel().tobytes()) # Creating new Row with _create_row(), because Row(name = value, ... ) # orders fields by name, which conflicts with expected schema order # when the new DataFrame is created by UDF return _create_row(self.imageFields, [origin, height, width, nChannels, mode, data])
ImageSchema = _ImageSchema() # Monkey patch to disallow instantiation of this class. def _disallow_instance(_: Any) -> NoReturn: raise RuntimeError("Creating instance of _ImageSchema class is disallowed.") _ImageSchema.__init__ = _disallow_instance # type: ignore[assignment] def _test() -> None: import doctest import pyspark.ml.image globs = pyspark.ml.image.__dict__.copy() spark = SparkSession.builder.master("local[2]").appName("ml.image tests").getOrCreate() globs["spark"] = spark (failure_count, test_count) = doctest.testmod( pyspark.ml.image, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()