Source code for pyspark.mllib.random

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
Python package for random data generation.
"""

import sys
from functools import wraps
from typing import Any, Callable, Optional

import numpy as np

from pyspark.mllib.common import callMLlibFunc
from pyspark.core.context import SparkContext
from pyspark.core.rdd import RDD
from pyspark.mllib.linalg import Vector


__all__ = [
    "RandomRDDs",
]


def toArray(f: Callable[..., RDD[Vector]]) -> Callable[..., RDD[np.ndarray]]:
    @wraps(f)
    def func(sc: SparkContext, *a: Any, **kw: Any) -> RDD[np.ndarray]:
        rdd = f(sc, *a, **kw)
        return rdd.map(lambda vec: vec.toArray())

    return func


[docs]class RandomRDDs: """ Generator methods for creating RDDs comprised of i.i.d samples from some distribution. .. versionadded:: 1.1.0 """
[docs] @staticmethod def uniformRDD( sc: SparkContext, size: int, numPartitions: Optional[int] = None, seed: Optional[int] = None ) -> RDD[float]: """ Generates an RDD comprised of i.i.d. samples from the uniform distribution U(0.0, 1.0). To transform the distribution in the generated RDD from U(0.0, 1.0) to U(a, b), use ``RandomRDDs.uniformRDD(sc, n, p, seed).map(lambda v: a + (b - a) * v)`` .. versionadded:: 1.1.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` used to create the RDD. size : int Size of the RDD. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`). seed : int, optional Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of float comprised of i.i.d. samples ~ `U(0.0, 1.0)`. Examples -------- >>> x = RandomRDDs.uniformRDD(sc, 100).collect() >>> len(x) 100 >>> max(x) <= 1.0 and min(x) >= 0.0 True >>> RandomRDDs.uniformRDD(sc, 100, 4).getNumPartitions() 4 >>> parts = RandomRDDs.uniformRDD(sc, 100, seed=4).getNumPartitions() >>> parts == sc.defaultParallelism True """ return callMLlibFunc("uniformRDD", sc._jsc, size, numPartitions, seed)
[docs] @staticmethod def normalRDD( sc: SparkContext, size: int, numPartitions: Optional[int] = None, seed: Optional[int] = None ) -> RDD[float]: """ Generates an RDD comprised of i.i.d. samples from the standard normal distribution. To transform the distribution in the generated RDD from standard normal to some other normal N(mean, sigma^2), use ``RandomRDDs.normal(sc, n, p, seed).map(lambda v: mean + sigma * v)`` .. versionadded:: 1.1.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` used to create the RDD. size : int Size of the RDD. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`). seed : int, optional Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0). Examples -------- >>> x = RandomRDDs.normalRDD(sc, 1000, seed=1) >>> stats = x.stats() >>> stats.count() 1000 >>> bool(abs(stats.mean() - 0.0) < 0.1) True >>> bool(abs(stats.stdev() - 1.0) < 0.1) True """ return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed)
[docs] @staticmethod def logNormalRDD( sc: SparkContext, mean: float, std: float, size: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[float]: """ Generates an RDD comprised of i.i.d. samples from the log normal distribution with the input mean and standard distribution. .. versionadded:: 1.3.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` used to create the RDD. mean : float mean for the log Normal distribution std : float std for the log Normal distribution size : int Size of the RDD. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`). seed : int, optional Random seed (default: a random long integer). Returns ------- RDD of float comprised of i.i.d. samples ~ log N(mean, std). Examples -------- >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> bool(abs(stats.mean() - expMean) < 0.5) True >>> from math import sqrt >>> bool(abs(stats.stdev() - expStd) < 0.5) True """ return callMLlibFunc( "logNormalRDD", sc._jsc, float(mean), float(std), size, numPartitions, seed )
[docs] @staticmethod def poissonRDD( sc: SparkContext, mean: float, size: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[float]: """ Generates an RDD comprised of i.i.d. samples from the Poisson distribution with the input mean. .. versionadded:: 1.1.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` SparkContext used to create the RDD. mean : float Mean, or lambda, for the Poisson distribution. size : int Size of the RDD. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`). seed : int, optional Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of float comprised of i.i.d. samples ~ Pois(mean). Examples -------- >>> mean = 100.0 >>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt >>> bool(abs(stats.stdev() - sqrt(mean)) < 0.5) True """ return callMLlibFunc("poissonRDD", sc._jsc, float(mean), size, numPartitions, seed)
[docs] @staticmethod def exponentialRDD( sc: SparkContext, mean: float, size: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[float]: """ Generates an RDD comprised of i.i.d. samples from the Exponential distribution with the input mean. .. versionadded:: 1.3.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` SparkContext used to create the RDD. mean : float Mean, or 1 / lambda, for the Exponential distribution. size : int Size of the RDD. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`). seed : int, optional Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of float comprised of i.i.d. samples ~ Exp(mean). Examples -------- >>> mean = 2.0 >>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt >>> bool(abs(stats.stdev() - sqrt(mean)) < 0.5) True """ return callMLlibFunc("exponentialRDD", sc._jsc, float(mean), size, numPartitions, seed)
[docs] @staticmethod def gammaRDD( sc: SparkContext, shape: float, scale: float, size: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[float]: """ Generates an RDD comprised of i.i.d. samples from the Gamma distribution with the input shape and scale. .. versionadded:: 1.3.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` SparkContext used to create the RDD. shape : float shape (> 0) parameter for the Gamma distribution scale : float scale (> 0) parameter for the Gamma distribution size : int Size of the RDD. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`). seed : int, optional Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of float comprised of i.i.d. samples ~ Gamma(shape, scale). Examples -------- >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> bool(abs(stats.mean() - expMean) < 0.5) True >>> bool(abs(stats.stdev() - expStd) < 0.5) True """ return callMLlibFunc( "gammaRDD", sc._jsc, float(shape), float(scale), size, numPartitions, seed )
[docs] @staticmethod @toArray def uniformVectorRDD( sc: SparkContext, numRows: int, numCols: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[Vector]: """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the uniform distribution U(0.0, 1.0). .. versionadded:: 1.1.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` SparkContext used to create the RDD. numRows : int Number of Vectors in the RDD. numCols : int Number of elements in each Vector. numPartitions : int, optional Number of partitions in the RDD. seed : int, optional Seed for the RNG that generates the seed for the generator in each partition. Returns ------- :py:class:`pyspark.RDD` RDD of Vector with vectors containing i.i.d samples ~ `U(0.0, 1.0)`. Examples -------- >>> import numpy as np >>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect()) >>> mat.shape (10, 10) >>> bool(mat.max() <= 1.0 and mat.min() >= 0.0) True >>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions() 4 """ return callMLlibFunc("uniformVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
[docs] @staticmethod @toArray def normalVectorRDD( sc: SparkContext, numRows: int, numCols: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[Vector]: """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the standard normal distribution. .. versionadded:: 1.1.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` SparkContext used to create the RDD. numRows : int Number of Vectors in the RDD. numCols : int Number of elements in each Vector. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`). seed : int, optional Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of Vector with vectors containing i.i.d. samples ~ `N(0.0, 1.0)`. Examples -------- >>> import numpy as np >>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> bool(abs(mat.mean() - 0.0) < 0.1) True >>> bool(abs(mat.std() - 1.0) < 0.1) True """ return callMLlibFunc("normalVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
[docs] @staticmethod @toArray def logNormalVectorRDD( sc: SparkContext, mean: float, std: float, numRows: int, numCols: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[Vector]: """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the log normal distribution. .. versionadded:: 1.3.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` SparkContext used to create the RDD. mean : float Mean of the log normal distribution std : float Standard Deviation of the log normal distribution numRows : int Number of Vectors in the RDD. numCols : int Number of elements in each Vector. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`). seed : int, optional Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of Vector with vectors containing i.i.d. samples ~ log `N(mean, std)`. Examples -------- >>> import numpy as np >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> m = RandomRDDs.logNormalVectorRDD(sc, mean, std, 100, 100, seed=1).collect() >>> mat = np.matrix(m) >>> mat.shape (100, 100) >>> bool(abs(mat.mean() - expMean) < 0.1) True >>> bool(abs(mat.std() - expStd) < 0.1) True """ return callMLlibFunc( "logNormalVectorRDD", sc._jsc, float(mean), float(std), numRows, numCols, numPartitions, seed, )
[docs] @staticmethod @toArray def poissonVectorRDD( sc: SparkContext, mean: float, numRows: int, numCols: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[Vector]: """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean. .. versionadded:: 1.1.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` SparkContext used to create the RDD. mean : float Mean, or lambda, for the Poisson distribution. numRows : float Number of Vectors in the RDD. numCols : int Number of elements in each Vector. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`) seed : int, optional Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of Vector with vectors containing i.i.d. samples ~ Pois(mean). Examples -------- >>> import numpy as np >>> mean = 100.0 >>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1) >>> mat = np.asmatrix(rdd.collect()) >>> mat.shape (100, 100) >>> bool(abs(mat.mean() - mean) < 0.5) True >>> from math import sqrt >>> bool(abs(mat.std() - sqrt(mean)) < 0.5) True """ return callMLlibFunc( "poissonVectorRDD", sc._jsc, float(mean), numRows, numCols, numPartitions, seed )
[docs] @staticmethod @toArray def exponentialVectorRDD( sc: SparkContext, mean: float, numRows: int, numCols: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[Vector]: """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Exponential distribution with the input mean. .. versionadded:: 1.3.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` SparkContext used to create the RDD. mean : float Mean, or 1 / lambda, for the Exponential distribution. numRows : int Number of Vectors in the RDD. numCols : int Number of elements in each Vector. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`) seed : int, optional Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of Vector with vectors containing i.i.d. samples ~ Exp(mean). Examples -------- >>> import numpy as np >>> mean = 0.5 >>> rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1) >>> mat = np.asmatrix(rdd.collect()) >>> mat.shape (100, 100) >>> bool(abs(mat.mean() - mean) < 0.5) True >>> from math import sqrt >>> bool(abs(mat.std() - sqrt(mean)) < 0.5) True """ return callMLlibFunc( "exponentialVectorRDD", sc._jsc, float(mean), numRows, numCols, numPartitions, seed )
[docs] @staticmethod @toArray def gammaVectorRDD( sc: SparkContext, shape: float, scale: float, numRows: int, numCols: int, numPartitions: Optional[int] = None, seed: Optional[int] = None, ) -> RDD[Vector]: """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Gamma distribution. .. versionadded:: 1.3.0 Parameters ---------- sc : :py:class:`pyspark.SparkContext` SparkContext used to create the RDD. shape : float Shape (> 0) of the Gamma distribution scale : float Scale (> 0) of the Gamma distribution numRows : int Number of Vectors in the RDD. numCols : int Number of elements in each Vector. numPartitions : int, optional Number of partitions in the RDD (default: `sc.defaultParallelism`). seed : int, optional, Random seed (default: a random long integer). Returns ------- :py:class:`pyspark.RDD` RDD of Vector with vectors containing i.i.d. samples ~ Gamma(shape, scale). Examples -------- >>> import numpy as np >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> bool(abs(mat.mean() - expMean) < 0.1) True >>> bool(abs(mat.std() - expStd) < 0.1) True """ return callMLlibFunc( "gammaVectorRDD", sc._jsc, float(shape), float(scale), numRows, numCols, numPartitions, seed, )
def _test() -> None: import doctest from pyspark.sql import SparkSession globs = globals().copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: spark = SparkSession.builder.master("local[2]").appName("mllib.random tests").getOrCreate() globs["sc"] = spark.sparkContext (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()