#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import glob
import os
import struct
import sys
import unittest
import difflib
import functools
import math
from decimal import Decimal
from time import time, sleep
from typing import (
Any,
Optional,
Union,
Dict,
List,
Callable,
)
from itertools import zip_longest
have_scipy = False
have_numpy = False
try:
import scipy # noqa: F401
have_scipy = True
except ImportError:
# No SciPy, but that's okay, we'll skip those tests
pass
try:
import numpy as np # noqa: F401
have_numpy = True
except ImportError:
# No NumPy, but that's okay, we'll skip those tests
pass
from pyspark import SparkConf
from pyspark.errors import PySparkAssertionError, PySparkException, PySparkTypeError
from pyspark.errors.exceptions.captured import CapturedException
from pyspark.errors.exceptions.base import QueryContextType
from pyspark.find_spark_home import _find_spark_home
from pyspark.sql.dataframe import DataFrame
from pyspark.sql import Row
from pyspark.sql.types import StructType, StructField, VariantVal
from pyspark.sql.functions import col, when
__all__ = ["assertDataFrameEqual", "assertSchemaEqual"]
SPARK_HOME = _find_spark_home()
def read_int(b):
return struct.unpack("!i", b)[0]
def write_int(i):
return struct.pack("!i", i)
def eventually(
timeout=30.0,
catch_assertions=False,
):
"""
Wait a given amount of time for a condition to pass, else fail with an error.
This is a helper utility for PySpark tests.
Parameters
----------
condition : function
Function that checks for termination conditions. condition() can return:
- True or None: Conditions met. Return without error.
- other value: Conditions not met yet. Continue. Upon timeout,
include last such value in error message.
Note that this method may be called at any time during
streaming execution (e.g., even before any results
have been created).
timeout : int
Number of seconds to wait. Default 30 seconds.
catch_assertions : bool
If False (default), do not catch AssertionErrors.
If True, catch AssertionErrors; continue, but save
error to throw upon timeout.
"""
assert timeout > 0
assert isinstance(catch_assertions, bool)
def decorator(condition: Callable) -> Callable:
assert isinstance(condition, Callable)
@functools.wraps(condition)
def wrapper(*args: Any, **kwargs: Any) -> Any:
start_time = time()
lastValue = None
numTries = 0
while time() - start_time < timeout:
numTries += 1
if catch_assertions:
try:
lastValue = condition(*args, **kwargs)
except AssertionError as e:
lastValue = e
else:
lastValue = condition(*args, **kwargs)
if lastValue is True or lastValue is None:
return
print(f"\nAttempt #{numTries} failed!\n{lastValue}")
sleep(0.01)
if isinstance(lastValue, AssertionError):
raise lastValue
else:
raise AssertionError(
"Test failed due to timeout after %g sec, with last condition returning: %s"
% (timeout, lastValue)
)
return wrapper
return decorator
class QuietTest:
def __init__(self, sc):
self.log4j = sc._jvm.org.apache.log4j
def __enter__(self):
self.old_level = self.log4j.LogManager.getRootLogger().getLevel()
self.log4j.LogManager.getRootLogger().setLevel(self.log4j.Level.FATAL)
def __exit__(self, exc_type, exc_val, exc_tb):
self.log4j.LogManager.getRootLogger().setLevel(self.old_level)
class PySparkTestCase(unittest.TestCase):
def setUp(self):
from pyspark import SparkContext
self._old_sys_path = list(sys.path)
class_name = self.__class__.__name__
self.sc = SparkContext("local[4]", class_name)
def tearDown(self):
self.sc.stop()
sys.path = self._old_sys_path
class ReusedPySparkTestCase(unittest.TestCase):
@classmethod
def conf(cls):
"""
Override this in subclasses to supply a more specific conf
"""
return SparkConf()
@classmethod
def setUpClass(cls):
from pyspark import SparkContext
cls.sc = SparkContext("local[4]", cls.__name__, conf=cls.conf())
@classmethod
def tearDownClass(cls):
cls.sc.stop()
def test_assert_classic_mode(self):
from pyspark.sql import is_remote
self.assertFalse(is_remote())
def quiet(self):
from pyspark.testing.utils import QuietTest
return QuietTest(self.sc)
class ByteArrayOutput:
def __init__(self):
self.buffer = bytearray()
def write(self, b):
self.buffer += b
def close(self):
pass
def search_jar(project_relative_path, sbt_jar_name_prefix, mvn_jar_name_prefix):
# Note that 'sbt_jar_name_prefix' and 'mvn_jar_name_prefix' are used since the prefix can
# vary for SBT or Maven specifically. See also SPARK-26856
project_full_path = os.path.join(SPARK_HOME, project_relative_path)
# We should ignore the following jars
ignored_jar_suffixes = ("javadoc.jar", "sources.jar", "test-sources.jar", "tests.jar")
# Search jar in the project dir using the jar name_prefix for both sbt build and maven
# build because the artifact jars are in different directories.
sbt_build = glob.glob(
os.path.join(project_full_path, "target/scala-*/%s*.jar" % sbt_jar_name_prefix)
)
maven_build = glob.glob(os.path.join(project_full_path, "target/%s*.jar" % mvn_jar_name_prefix))
jar_paths = sbt_build + maven_build
jars = [jar for jar in jar_paths if not jar.endswith(ignored_jar_suffixes)]
if not jars:
return None
elif len(jars) > 1:
raise RuntimeError("Found multiple JARs: %s; please remove all but one" % (", ".join(jars)))
else:
return jars[0]
def _terminal_color_support():
try:
# determine if environment supports color
script = "$(test $(tput colors)) && $(test $(tput colors) -ge 8) && echo true || echo false"
return os.popen(script).read()
except Exception:
return False
def _context_diff(actual: List[str], expected: List[str], n: int = 3):
"""
Modified from difflib context_diff API,
see original code here: https://github.com/python/cpython/blob/main/Lib/difflib.py#L1180
"""
def red(s: str) -> str:
red_color = "\033[31m"
no_color = "\033[0m"
return red_color + str(s) + no_color
prefix = dict(insert="+ ", delete="- ", replace="! ", equal=" ")
for group in difflib.SequenceMatcher(None, actual, expected).get_grouped_opcodes(n):
yield "*** actual ***"
if any(tag in {"replace", "delete"} for tag, _, _, _, _ in group):
for tag, i1, i2, _, _ in group:
for line in actual[i1:i2]:
if tag != "equal" and _terminal_color_support():
yield red(prefix[tag] + str(line))
else:
yield prefix[tag] + str(line)
yield "\n"
yield "*** expected ***"
if any(tag in {"replace", "insert"} for tag, _, _, _, _ in group):
for tag, _, _, j1, j2 in group:
for line in expected[j1:j2]:
if tag != "equal" and _terminal_color_support():
yield red(prefix[tag] + str(line))
else:
yield prefix[tag] + str(line)
class PySparkErrorTestUtils:
"""
This util provide functions to accurate and consistent error testing
based on PySpark error classes.
"""
def check_error(
self,
exception: PySparkException,
errorClass: str,
messageParameters: Optional[Dict[str, str]] = None,
query_context_type: Optional[QueryContextType] = None,
fragment: Optional[str] = None,
):
query_context = exception.getQueryContext()
assert bool(query_context) == (query_context_type is not None), (
"`query_context_type` is required when QueryContext exists. "
f"QueryContext: {query_context}."
)
# Test if given error is an instance of PySparkException.
self.assertIsInstance(
exception,
PySparkException,
f"checkError requires 'PySparkException', got '{exception.__class__.__name__}'.",
)
# Test error class
expected = errorClass
actual = exception.getErrorClass()
self.assertEqual(
expected, actual, f"Expected error class was '{expected}', got '{actual}'."
)
# Test message parameters
expected = messageParameters
actual = exception.getMessageParameters()
self.assertEqual(
expected, actual, f"Expected message parameters was '{expected}', got '{actual}'"
)
# Test query context
if query_context:
expected = query_context_type
actual_contexts = exception.getQueryContext()
for actual_context in actual_contexts:
actual = actual_context.contextType()
self.assertEqual(
expected, actual, f"Expected QueryContext was '{expected}', got '{actual}'"
)
if actual == QueryContextType.DataFrame:
assert (
fragment is not None
), "`fragment` is required when QueryContextType is DataFrame."
expected = fragment
actual = actual_context.fragment()
self.assertEqual(
expected,
actual,
f"Expected PySpark fragment was '{expected}', got '{actual}'",
)
[docs]def assertSchemaEqual(
actual: StructType,
expected: StructType,
ignoreNullable: bool = True,
ignoreColumnOrder: bool = False,
ignoreColumnName: bool = False,
):
r"""
A util function to assert equality between DataFrame schemas `actual` and `expected`.
.. versionadded:: 3.5.0
Parameters
----------
actual : StructType
The DataFrame schema that is being compared or tested.
expected : StructType
The expected schema, for comparison with the actual schema.
ignoreNullable : bool, default True
Specifies whether a column’s nullable property is included when checking for
schema equality.
When set to `True` (default), the nullable property of the columns being compared
is not taken into account and the columns will be considered equal even if they have
different nullable settings.
When set to `False`, columns are considered equal only if they have the same nullable
setting.
.. versionadded:: 4.0.0
ignoreColumnOrder : bool, default False
Specifies whether to compare columns in the order they appear in the DataFrame or by
column name.
If set to `False` (default), columns are compared in the order they appear in the
DataFrames.
When set to `True`, a column in the expected DataFrame is compared to the column with the
same name in the actual DataFrame.
.. versionadded:: 4.0.0
ignoreColumnName : bool, default False
Specifies whether to fail the initial schema equality check if the column names in the two
DataFrames are different.
When set to `False` (default), column names are checked and the function fails if they are
different.
When set to `True`, the function will succeed even if column names are different.
Column data types are compared for columns in the order they appear in the DataFrames.
.. versionadded:: 4.0.0
Notes
-----
When assertSchemaEqual fails, the error message uses the Python `difflib` library to display
a diff log of the `actual` and `expected` schemas.
Examples
--------
>>> from pyspark.sql.types import StructType, StructField, ArrayType, IntegerType, DoubleType
>>> s1 = StructType([StructField("names", ArrayType(DoubleType(), True), True)])
>>> s2 = StructType([StructField("names", ArrayType(DoubleType(), True), True)])
>>> assertSchemaEqual(s1, s2) # pass, schemas are identical
Different schemas with `ignoreNullable=False` would fail.
>>> s3 = StructType([StructField("names", ArrayType(DoubleType(), True), False)])
>>> assertSchemaEqual(s1, s3, ignoreNullable=False) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
PySparkAssertionError: [DIFFERENT_SCHEMA] Schemas do not match.
--- actual
+++ expected
- StructType([StructField('names', ArrayType(DoubleType(), True), True)])
? ^^^
+ StructType([StructField('names', ArrayType(DoubleType(), True), False)])
? ^^^^
>>> df1 = spark.createDataFrame(data=[(1, 1000), (2, 3000)], schema=["id", "number"])
>>> df2 = spark.createDataFrame(data=[("1", 1000), ("2", 5000)], schema=["id", "amount"])
>>> assertSchemaEqual(df1.schema, df2.schema) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
PySparkAssertionError: [DIFFERENT_SCHEMA] Schemas do not match.
--- actual
+++ expected
- StructType([StructField('id', LongType(), True), StructField('number', LongType(), True)])
? ^^ ^^^^^
+ StructType([StructField('id', StringType(), True), StructField('amount', LongType(), True)])
? ^^^^ ++++ ^
Compare two schemas ignoring the column order.
>>> s1 = StructType(
... [StructField("a", IntegerType(), True), StructField("b", DoubleType(), True)]
... )
>>> s2 = StructType(
... [StructField("b", DoubleType(), True), StructField("a", IntegerType(), True)]
... )
>>> assertSchemaEqual(s1, s2, ignoreColumnOrder=True)
Compare two schemas ignoring the column names.
>>> s1 = StructType(
... [StructField("a", IntegerType(), True), StructField("c", DoubleType(), True)]
... )
>>> s2 = StructType(
... [StructField("b", IntegerType(), True), StructField("d", DoubleType(), True)]
... )
>>> assertSchemaEqual(s1, s2, ignoreColumnName=True)
"""
if not isinstance(actual, StructType):
raise PySparkTypeError(
errorClass="NOT_STRUCT",
messageParameters={"arg_name": "actual", "arg_type": type(actual).__name__},
)
if not isinstance(expected, StructType):
raise PySparkTypeError(
errorClass="NOT_STRUCT",
messageParameters={"arg_name": "expected", "arg_type": type(expected).__name__},
)
def compare_schemas_ignore_nullable(s1: StructType, s2: StructType):
if len(s1) != len(s2):
return False
zipped = zip_longest(s1, s2)
for sf1, sf2 in zipped:
if not compare_structfields_ignore_nullable(sf1, sf2):
return False
return True
def compare_structfields_ignore_nullable(actualSF: StructField, expectedSF: StructField):
if actualSF is None and expectedSF is None:
return True
elif actualSF is None or expectedSF is None:
return False
if actualSF.name != expectedSF.name:
return False
else:
return compare_datatypes_ignore_nullable(actualSF.dataType, expectedSF.dataType)
def compare_datatypes_ignore_nullable(dt1: Any, dt2: Any):
# checks datatype equality, using recursion to ignore nullable
if dt1.typeName() == dt2.typeName():
if dt1.typeName() == "array":
return compare_datatypes_ignore_nullable(dt1.elementType, dt2.elementType)
elif dt1.typeName() == "struct":
return compare_schemas_ignore_nullable(dt1, dt2)
else:
return True
else:
return False
if ignoreColumnOrder:
actual = StructType(sorted(actual, key=lambda x: x.name))
expected = StructType(sorted(expected, key=lambda x: x.name))
if ignoreColumnName:
actual = StructType(
[StructField(str(i), field.dataType, field.nullable) for i, field in enumerate(actual)]
)
expected = StructType(
[
StructField(str(i), field.dataType, field.nullable)
for i, field in enumerate(expected)
]
)
if (ignoreNullable and not compare_schemas_ignore_nullable(actual, expected)) or (
not ignoreNullable and actual != expected
):
generated_diff = difflib.ndiff(str(actual).splitlines(), str(expected).splitlines())
error_msg = "\n".join(generated_diff)
raise PySparkAssertionError(
errorClass="DIFFERENT_SCHEMA",
messageParameters={"error_msg": error_msg},
)
from typing import TYPE_CHECKING
if TYPE_CHECKING:
import pandas
import pyspark.pandas
[docs]def assertDataFrameEqual(
actual: Union[DataFrame, "pandas.DataFrame", "pyspark.pandas.DataFrame", List[Row]],
expected: Union[DataFrame, "pandas.DataFrame", "pyspark.pandas.DataFrame", List[Row]],
checkRowOrder: bool = False,
rtol: float = 1e-5,
atol: float = 1e-8,
ignoreNullable: bool = True,
ignoreColumnOrder: bool = False,
ignoreColumnName: bool = False,
ignoreColumnType: bool = False,
maxErrors: Optional[int] = None,
showOnlyDiff: bool = False,
includeDiffRows=False,
):
r"""
A util function to assert equality between `actual` and `expected`
(DataFrames or lists of Rows), with optional parameters `checkRowOrder`, `rtol`, and `atol`.
Supports Spark, Spark Connect, pandas, and pandas-on-Spark DataFrames.
For more information about pandas-on-Spark DataFrame equality, see the docs for
`assertPandasOnSparkEqual`.
.. versionadded:: 3.5.0
Parameters
----------
actual : DataFrame (Spark, Spark Connect, pandas, or pandas-on-Spark) or list of Rows
The DataFrame that is being compared or tested.
expected : DataFrame (Spark, Spark Connect, pandas, or pandas-on-Spark) or list of Rows
The expected result of the operation, for comparison with the actual result.
checkRowOrder : bool, optional
A flag indicating whether the order of rows should be considered in the comparison.
If set to `False` (default), the row order is not taken into account.
If set to `True`, the order of rows is important and will be checked during comparison.
(See Notes)
rtol : float, optional
The relative tolerance, used in asserting approximate equality for float values in actual
and expected. Set to 1e-5 by default. (See Notes)
atol : float, optional
The absolute tolerance, used in asserting approximate equality for float values in actual
and expected. Set to 1e-8 by default. (See Notes)
ignoreNullable : bool, default True
Specifies whether a column’s nullable property is included when checking for
schema equality.
When set to `True` (default), the nullable property of the columns being compared
is not taken into account and the columns will be considered equal even if they have
different nullable settings.
When set to `False`, columns are considered equal only if they have the same nullable
setting.
.. versionadded:: 4.0.0
ignoreColumnOrder : bool, default False
Specifies whether to compare columns in the order they appear in the DataFrame or by
column name.
If set to `False` (default), columns are compared in the order they appear in the
DataFrames.
When set to `True`, a column in the expected DataFrame is compared to the column with the
same name in the actual DataFrame.
.. versionadded:: 4.0.0
ignoreColumnName : bool, default False
Specifies whether to fail the initial schema equality check if the column names in the two
DataFrames are different.
When set to `False` (default), column names are checked and the function fails if they are
different.
When set to `True`, the function will succeed even if column names are different.
Column data types are compared for columns in the order they appear in the DataFrames.
.. versionadded:: 4.0.0
ignoreColumnType : bool, default False
Specifies whether to ignore the data type of the columns when comparing.
When set to `False` (default), column data types are checked and the function fails if they
are different.
When set to `True`, the schema equality check will succeed even if column data types are
different and the function will attempt to compare rows.
.. versionadded:: 4.0.0
maxErrors : bool, optional
The maximum number of row comparison failures to encounter before returning.
When this number of row comparisons have failed, the function returns independent of how
many rows have been compared.
Set to None by default which means compare all rows independent of number of failures.
.. versionadded:: 4.0.0
showOnlyDiff : bool, default False
If set to `True`, the error message will only include rows that are different.
If set to `False` (default), the error message will include all rows
(when there is at least one row that is different).
.. versionadded:: 4.0.0
includeDiffRows: bool, False
If set to `True`, the unequal rows are included in PySparkAssertionError for further
debugging. If set to `False` (default), the unequal rows are not returned as a data set.
.. versionadded:: 4.0.0
Notes
-----
When `assertDataFrameEqual` fails, the error message uses the Python `difflib` library to
display a diff log of each row that differs in `actual` and `expected`.
For `checkRowOrder`, note that PySpark DataFrame ordering is non-deterministic, unless
explicitly sorted.
Note that schema equality is checked only when `expected` is a DataFrame (not a list of Rows).
For DataFrames with float/decimal values, assertDataFrame asserts approximate equality.
Two float/decimal values a and b are approximately equal if the following equation is True:
``absolute(a - b) <= (atol + rtol * absolute(b))``.
`ignoreColumnOrder` cannot be set to `True` if `ignoreColumnNames` is also set to `True`.
`ignoreColumnNames` cannot be set to `True` if `ignoreColumnOrder` is also set to `True`.
Examples
--------
>>> df1 = spark.createDataFrame(data=[("1", 1000), ("2", 3000)], schema=["id", "amount"])
>>> df2 = spark.createDataFrame(data=[("1", 1000), ("2", 3000)], schema=["id", "amount"])
>>> assertDataFrameEqual(df1, df2) # pass, DataFrames are identical
>>> df1 = spark.createDataFrame(data=[("1", 0.1), ("2", 3.23)], schema=["id", "amount"])
>>> df2 = spark.createDataFrame(data=[("1", 0.109), ("2", 3.23)], schema=["id", "amount"])
>>> assertDataFrameEqual(df1, df2, rtol=1e-1) # pass, DataFrames are approx equal by rtol
>>> df1 = spark.createDataFrame(data=[(1, 1000), (2, 3000)], schema=["id", "amount"])
>>> list_of_rows = [Row(1, 1000), Row(2, 3000)]
>>> assertDataFrameEqual(df1, list_of_rows) # pass, actual and expected data are equal
>>> import pyspark.pandas as ps # doctest: +SKIP
>>> df1 = ps.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}) # doctest: +SKIP
>>> df2 = ps.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}) # doctest: +SKIP
>>> # pass, pandas-on-Spark DataFrames are equal
>>> assertDataFrameEqual(df1, df2) # doctest: +SKIP
>>> df1 = spark.createDataFrame(
... data=[("1", 1000.00), ("2", 3000.00), ("3", 2000.00)], schema=["id", "amount"])
>>> df2 = spark.createDataFrame(
... data=[("1", 1001.00), ("2", 3000.00), ("3", 2003.00)], schema=["id", "amount"])
>>> assertDataFrameEqual(df1, df2) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
PySparkAssertionError: [DIFFERENT_ROWS] Results do not match: ( 66.66667 % )
*** actual ***
! Row(id='1', amount=1000.0)
Row(id='2', amount=3000.0)
! Row(id='3', amount=2000.0)
*** expected ***
! Row(id='1', amount=1001.0)
Row(id='2', amount=3000.0)
! Row(id='3', amount=2003.0)
Example for ignoreNullable
>>> from pyspark.sql.types import StructType, StructField, StringType, LongType
>>> df1_nullable = spark.createDataFrame(
... data=[(1000, "1"), (5000, "2")],
... schema=StructType(
... [StructField("amount", LongType(), True), StructField("id", StringType(), True)]
... )
... )
>>> df2_nullable = spark.createDataFrame(
... data=[(1000, "1"), (5000, "2")],
... schema=StructType(
... [StructField("amount", LongType(), True), StructField("id", StringType(), False)]
... )
... )
>>> assertDataFrameEqual(df1_nullable, df2_nullable, ignoreNullable=True) # pass
>>> assertDataFrameEqual(
... df1_nullable, df2_nullable, ignoreNullable=False
... ) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
PySparkAssertionError: [DIFFERENT_SCHEMA] Schemas do not match.
--- actual
+++ expected
- StructType([StructField('amount', LongType(), True), StructField('id', StringType(), True)])
? ^^^
+ StructType([StructField('amount', LongType(), True), StructField('id', StringType(), False)])
? ^^^^
Example for ignoreColumnOrder
>>> df1_col_order = spark.createDataFrame(
... data=[(1000, "1"), (5000, "2")], schema=["amount", "id"]
... )
>>> df2_col_order = spark.createDataFrame(
... data=[("1", 1000), ("2", 5000)], schema=["id", "amount"]
... )
>>> assertDataFrameEqual(df1_col_order, df2_col_order, ignoreColumnOrder=True)
Example for ignoreColumnName
>>> df1_col_names = spark.createDataFrame(
... data=[(1000, "1"), (5000, "2")], schema=["amount", "identity"]
... )
>>> df2_col_names = spark.createDataFrame(
... data=[(1000, "1"), (5000, "2")], schema=["amount", "id"]
... )
>>> assertDataFrameEqual(df1_col_names, df2_col_names, ignoreColumnName=True)
Example for ignoreColumnType
>>> df1_col_types = spark.createDataFrame(
... data=[(1000, "1"), (5000, "2")], schema=["amount", "id"]
... )
>>> df2_col_types = spark.createDataFrame(
... data=[(1000.0, "1"), (5000.0, "2")], schema=["amount", "id"]
... )
>>> assertDataFrameEqual(df1_col_types, df2_col_types, ignoreColumnType=True)
Example for maxErrors (will only report the first mismatching row)
>>> df1 = spark.createDataFrame([(1, "A"), (2, "B"), (3, "C")])
>>> df2 = spark.createDataFrame([(1, "A"), (2, "X"), (3, "Y")])
>>> assertDataFrameEqual(df1, df2, maxErrors=1) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
PySparkAssertionError: [DIFFERENT_ROWS] Results do not match: ( 33.33333 % )
*** actual ***
Row(_1=1, _2='A')
! Row(_1=2, _2='B')
*** expected ***
Row(_1=1, _2='A')
! Row(_1=2, _2='X')
Example for showOnlyDiff (will only report the mismatching rows)
>>> df1 = spark.createDataFrame([(1, "A"), (2, "B"), (3, "C")])
>>> df2 = spark.createDataFrame([(1, "A"), (2, "X"), (3, "Y")])
>>> assertDataFrameEqual(df1, df2, showOnlyDiff=True) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
PySparkAssertionError: [DIFFERENT_ROWS] Results do not match: ( 66.66667 % )
*** actual ***
! Row(_1=2, _2='B')
! Row(_1=3, _2='C')
*** expected ***
! Row(_1=2, _2='X')
! Row(_1=3, _2='Y')
The `includeDiffRows` parameter can be used to include the rows that did not match
in the PySparkAssertionError. This can be useful for debugging or further analysis.
>>> df1 = spark.createDataFrame(
... data=[("1", 1000.00), ("2", 3000.00), ("3", 2000.00)], schema=["id", "amount"])
>>> df2 = spark.createDataFrame(
... data=[("1", 1001.00), ("2", 3000.00), ("3", 2003.00)], schema=["id", "amount"])
>>> try:
... assertDataFrameEqual(df1, df2, includeDiffRows=True)
... except PySparkAssertionError as e:
... spark.createDataFrame(e.data).show() # doctest: +NORMALIZE_WHITESPACE
+-----------+-----------+
| _1| _2|
+-----------+-----------+
|{1, 1000.0}|{1, 1001.0}|
|{3, 2000.0}|{3, 2003.0}|
+-----------+-----------+
"""
if actual is None and expected is None:
return True
elif actual is None:
raise PySparkAssertionError(
errorClass="INVALID_TYPE_DF_EQUALITY_ARG",
messageParameters={
"expected_type": "Union[DataFrame, ps.DataFrame, List[Row]]",
"arg_name": "actual",
"actual_type": None,
},
)
elif expected is None:
raise PySparkAssertionError(
errorClass="INVALID_TYPE_DF_EQUALITY_ARG",
messageParameters={
"expected_type": "Union[DataFrame, ps.DataFrame, List[Row]]",
"arg_name": "expected",
"actual_type": None,
},
)
has_pandas = False
try:
# If pandas dependencies are available, allow pandas or pandas-on-Spark DataFrame
import pandas as pd
has_pandas = True
except ImportError:
# no pandas, so we won't call pandasutils functions
pass
has_arrow = False
try:
import pyarrow
has_arrow = True
except ImportError:
pass
if has_pandas and has_arrow:
import pyspark.pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestUtils
if (
isinstance(actual, pd.DataFrame)
or isinstance(expected, pd.DataFrame)
or isinstance(actual, ps.DataFrame)
or isinstance(expected, ps.DataFrame)
):
# handle pandas DataFrames
# assert approximate equality for float data
return PandasOnSparkTestUtils().assert_eq(
actual, expected, almost=True, rtol=rtol, atol=atol, check_row_order=checkRowOrder
)
if not isinstance(actual, (DataFrame, list)):
raise PySparkAssertionError(
errorClass="INVALID_TYPE_DF_EQUALITY_ARG",
messageParameters={
"expected_type": "Union[DataFrame, ps.DataFrame, List[Row]]",
"arg_name": "actual",
"actual_type": type(actual),
},
)
elif not isinstance(expected, (DataFrame, list)):
raise PySparkAssertionError(
errorClass="INVALID_TYPE_DF_EQUALITY_ARG",
messageParameters={
"expected_type": "Union[DataFrame, ps.DataFrame, List[Row]]",
"arg_name": "expected",
"actual_type": type(expected),
},
)
if ignoreColumnOrder:
actual = actual.select(*sorted(actual.columns))
expected = expected.select(*sorted(expected.columns))
def rename_dataframe_columns(df: DataFrame) -> DataFrame:
"""Rename DataFrame columns to sequential numbers for comparison"""
renamed_columns = [str(i) for i in range(len(df.columns))]
return df.toDF(*renamed_columns)
if ignoreColumnName:
actual = rename_dataframe_columns(actual)
expected = rename_dataframe_columns(expected)
def cast_columns_to_string(df: DataFrame) -> DataFrame:
"""Cast all DataFrame columns to string for comparison"""
for col_name in df.columns:
# Add logic to remove trailing .0 for float columns that are whole numbers
df = df.withColumn(
col_name,
when(
(col(col_name).cast("float").isNotNull())
& (col(col_name).cast("float") == col(col_name).cast("int")),
col(col_name).cast("int").cast("string"),
).otherwise(col(col_name).cast("string")),
)
return df
if ignoreColumnType:
actual = cast_columns_to_string(actual)
expected = cast_columns_to_string(expected)
def compare_rows(r1: Row, r2: Row):
def compare_vals(val1, val2):
if isinstance(val1, list) and isinstance(val2, list):
return len(val1) == len(val2) and all(
compare_vals(x, y) for x, y in zip(val1, val2)
)
elif isinstance(val1, Row) and isinstance(val2, Row):
return all(compare_vals(x, y) for x, y in zip(val1, val2))
elif isinstance(val1, dict) and isinstance(val2, dict):
return (
len(val1.keys()) == len(val2.keys())
and val1.keys() == val2.keys()
and all(compare_vals(val1[k], val2[k]) for k in val1.keys())
)
elif isinstance(val1, float) and isinstance(val2, float):
if abs(val1 - val2) > (atol + rtol * abs(val2)):
return False
elif isinstance(val1, Decimal) and isinstance(val2, Decimal):
if abs(val1 - val2) > (Decimal(atol) + Decimal(rtol) * abs(val2)):
return False
elif isinstance(val1, VariantVal) and isinstance(val2, VariantVal):
return compare_vals(val1.toPython(), val2.toPython())
else:
if val1 != val2:
return False
return True
if r1 is None and r2 is None:
return True
elif r1 is None or r2 is None:
return False
return compare_vals(r1, r2)
def assert_rows_equal(
rows1: List[Row], rows2: List[Row], maxErrors: int = None, showOnlyDiff: bool = False
):
zipped = list(zip_longest(rows1, rows2))
diff_rows_cnt = 0
diff_rows = []
has_diff_rows = False
rows_str1 = ""
rows_str2 = ""
# count different rows
for r1, r2 in zipped:
if not compare_rows(r1, r2):
diff_rows_cnt += 1
has_diff_rows = True
if includeDiffRows:
diff_rows.append((r1, r2))
rows_str1 += str(r1) + "\n"
rows_str2 += str(r2) + "\n"
if maxErrors is not None and diff_rows_cnt >= maxErrors:
break
elif not showOnlyDiff:
rows_str1 += str(r1) + "\n"
rows_str2 += str(r2) + "\n"
generated_diff = _context_diff(
actual=rows_str1.splitlines(), expected=rows_str2.splitlines(), n=len(zipped)
)
if has_diff_rows:
error_msg = "Results do not match: "
percent_diff = (diff_rows_cnt / len(zipped)) * 100
error_msg += "( %.5f %% )" % percent_diff
error_msg += "\n" + "\n".join(generated_diff)
data = diff_rows if includeDiffRows else None
raise PySparkAssertionError(
errorClass="DIFFERENT_ROWS", messageParameters={"error_msg": error_msg}, data=data
)
# only compare schema if expected is not a List
if not isinstance(actual, list) and not isinstance(expected, list):
if ignoreNullable:
assertSchemaEqual(actual.schema, expected.schema)
elif actual.schema != expected.schema:
generated_diff = difflib.ndiff(
str(actual.schema).splitlines(), str(expected.schema).splitlines()
)
error_msg = "\n".join(generated_diff)
raise PySparkAssertionError(
errorClass="DIFFERENT_SCHEMA",
messageParameters={"error_msg": error_msg},
)
if not isinstance(actual, list):
if actual.isStreaming:
raise PySparkAssertionError(
errorClass="UNSUPPORTED_OPERATION",
messageParameters={"operation": "assertDataFrameEqual on streaming DataFrame"},
)
actual_list = actual.collect()
else:
actual_list = actual
if not isinstance(expected, list):
if expected.isStreaming:
raise PySparkAssertionError(
errorClass="UNSUPPORTED_OPERATION",
messageParameters={"operation": "assertDataFrameEqual on streaming DataFrame"},
)
expected_list = expected.collect()
else:
expected_list = expected
if not checkRowOrder:
# rename duplicate columns for sorting
actual_list = sorted(actual_list, key=lambda x: str(x))
expected_list = sorted(expected_list, key=lambda x: str(x))
assert_rows_equal(actual_list, expected_list, maxErrors=maxErrors, showOnlyDiff=showOnlyDiff)
def _test() -> None:
import doctest
from pyspark.sql import SparkSession
import pyspark.testing.utils
globs = pyspark.testing.utils.__dict__.copy()
spark = SparkSession.builder.master("local[4]").appName("testing.utils tests").getOrCreate()
globs["spark"] = spark
(failure_count, test_count) = doctest.testmod(
pyspark.testing.utils,
globs=globs,
optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE,
)
spark.stop()
if failure_count:
sys.exit(-1)
if __name__ == "__main__":
_test()