datasketches-cpp
Loading...
Searching...
No Matches
bounds_binomial_proportions.hpp
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one
3 * or more contributor license agreements. See the NOTICE file
4 * distributed with this work for additional information
5 * regarding copyright ownership. The ASF licenses this file
6 * to you under the Apache License, Version 2.0 (the
7 * "License"); you may not use this file except in compliance
8 * with the License. You may obtain a copy of the License at
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing,
13 * software distributed under the License is distributed on an
14 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15 * KIND, either express or implied. See the License for the
16 * specific language governing permissions and limitations
17 * under the License.
18 */
19
20#ifndef _BOUNDS_BINOMIAL_PROPORTIONS_HPP_
21#define _BOUNDS_BINOMIAL_PROPORTIONS_HPP_
22
23#include <cmath>
24#include <stdexcept>
25
26namespace datasketches {
27
81class bounds_binomial_proportions { // confidence intervals for binomial proportions
82
83public:
113 static inline double approximate_lower_bound_on_p(uint64_t n, uint64_t k, double num_std_devs) {
114 check_inputs(n, k);
115 if (n == 0) { return 0.0; } // the coin was never flipped, so we know nothing
116 else if (k == 0) { return 0.0; }
117 else if (k == 1) { return (exact_lower_bound_on_p_k_eq_1(n, delta_of_num_stdevs(num_std_devs))); }
118 else if (k == n) { return (exact_lower_bound_on_p_k_eq_n(n, delta_of_num_stdevs(num_std_devs))); }
119 else {
120 double x = abramowitz_stegun_formula_26p5p22((n - k) + 1.0, static_cast<double>(k), (-1.0 * num_std_devs));
121 return (1.0 - x); // which is p
122 }
123 }
124
148 static inline double approximate_upper_bound_on_p(uint64_t n, uint64_t k, double num_std_devs) {
149 check_inputs(n, k);
150 if (n == 0) { return 1.0; } // the coin was never flipped, so we know nothing
151 else if (k == n) { return 1.0; }
152 else if (k == (n - 1)) {
153 return (exact_upper_bound_on_p_k_eq_minusone(n, delta_of_num_stdevs(num_std_devs)));
154 }
155 else if (k == 0) {
156 return (exact_upper_bound_on_p_k_eq_zero(n, delta_of_num_stdevs(num_std_devs)));
157 }
158 else {
159 double x = abramowitz_stegun_formula_26p5p22(static_cast<double>(n - k), k + 1.0, num_std_devs);
160 return (1.0 - x); // which is p
161 }
162 }
163
170 static inline double estimate_unknown_p(uint64_t n, uint64_t k) {
171 check_inputs(n, k);
172 if (n == 0) { return 0.5; } // the coin was never flipped, so we know nothing
173 else { return ((double) k / (double) n); }
174 }
175
181 static inline double erf(double x) {
182 if (x < 0.0) { return (-1.0 * (erf_of_nonneg(-1.0 * x))); }
183 else { return (erf_of_nonneg(x)); }
184 }
185
191 static inline double normal_cdf(double x) {
192 return (0.5 * (1.0 + (erf(x / (sqrt(2.0))))));
193 }
194
195private:
196 static inline void check_inputs(uint64_t n, uint64_t k) {
197 if (k > n) { throw std::invalid_argument("K cannot exceed N"); }
198 }
199
200 //@formatter:off
201 // Abramowitz and Stegun formula 7.1.28, p. 88; Claims accuracy of about 7 decimal digits */
202 static inline double erf_of_nonneg(double x) {
203 // The constants that appear below, formatted for easy checking against the book.
204 // a1 = 0.07052 30784
205 // a3 = 0.00927 05272
206 // a5 = 0.00027 65672
207 // a2 = 0.04228 20123
208 // a4 = 0.00015 20143
209 // a6 = 0.00004 30638
210 static const double a1 = 0.0705230784;
211 static const double a3 = 0.0092705272;
212 static const double a5 = 0.0002765672;
213 static const double a2 = 0.0422820123;
214 static const double a4 = 0.0001520143;
215 static const double a6 = 0.0000430638;
216 const double x2 = x * x; // x squared, x cubed, etc.
217 const double x3 = x2 * x;
218 const double x4 = x2 * x2;
219 const double x5 = x2 * x3;
220 const double x6 = x3 * x3;
221 const double sum = ( 1.0
222 + (a1 * x)
223 + (a2 * x2)
224 + (a3 * x3)
225 + (a4 * x4)
226 + (a5 * x5)
227 + (a6 * x6) );
228 const double sum2 = sum * sum; // raise the sum to the 16th power
229 const double sum4 = sum2 * sum2;
230 const double sum8 = sum4 * sum4;
231 const double sum16 = sum8 * sum8;
232 return (1.0 - (1.0 / sum16));
233 }
234
235 static inline double delta_of_num_stdevs(double kappa) {
236 return (normal_cdf(-1.0 * kappa));
237 }
238
239 //@formatter:on
240 // Formula 26.5.22 on page 945 of Abramowitz & Stegun, which is an approximation
241 // of the inverse of the incomplete beta function I_x(a,b) = delta
242 // viewed as a scalar function of x.
243 // In other words, we specify delta, and it gives us x (with a and b held constant).
244 // However, delta is specified in an indirect way through yp which
245 // is the number of stdDevs that leaves delta probability in the right
246 // tail of a standard gaussian distribution.
247
248 // We point out that the variable names correspond to those in the book,
249 // and it is worth keeping it that way so that it will always be easy to verify
250 // that the formula was typed in correctly.
251
252 static inline double abramowitz_stegun_formula_26p5p22(double a, double b, double yp) {
253 const double b2m1 = (2.0 * b) - 1.0;
254 const double a2m1 = (2.0 * a) - 1.0;
255 const double lambda = ((yp * yp) - 3.0) / 6.0;
256 const double htmp = (1.0 / a2m1) + (1.0 / b2m1);
257 const double h = 2.0 / htmp;
258 const double term1 = (yp * (sqrt(h + lambda))) / h;
259 const double term2 = (1.0 / b2m1) - (1.0 / a2m1);
260 const double term3 = (lambda + (5.0 / 6.0)) - (2.0 / (3.0 * h));
261 const double w = term1 - (term2 * term3);
262 const double xp = a / (a + (b * (exp(2.0 * w))));
263 return xp;
264 }
265
266 // Formulas for some special cases.
267
268 static inline double exact_upper_bound_on_p_k_eq_zero(uint64_t n, double delta) {
269 return (1.0 - pow(delta, (1.0 / n)));
270 }
271
272 static inline double exact_lower_bound_on_p_k_eq_n(uint64_t n, double delta) {
273 return (pow(delta, (1.0 / n)));
274 }
275
276 static inline double exact_lower_bound_on_p_k_eq_1(uint64_t n, double delta) {
277 return (1.0 - pow((1.0 - delta), (1.0 / n)));
278 }
279
280 static inline double exact_upper_bound_on_p_k_eq_minusone(uint64_t n, double delta) {
281 return (pow((1.0 - delta), (1.0 / n)));
282 }
283
284};
285
286}
287
288#endif // _BOUNDS_BINOMIAL_PROPORTIONS_HPP_
Confidence intervals for binomial proportions.
Definition bounds_binomial_proportions.hpp:81
static double estimate_unknown_p(uint64_t n, uint64_t k)
Computes an estimate of an unknown binomial proportion.
Definition bounds_binomial_proportions.hpp:170
static double approximate_upper_bound_on_p(uint64_t n, uint64_t k, double num_std_devs)
Computes upper bound of approximate Clopper-Pearson confidence interval for a binomial proportion.
Definition bounds_binomial_proportions.hpp:148
static double normal_cdf(double x)
Computes an approximation to normal_cdf(x).
Definition bounds_binomial_proportions.hpp:191
static double erf(double x)
Computes an approximation to the erf() function.
Definition bounds_binomial_proportions.hpp:181
static double approximate_lower_bound_on_p(uint64_t n, uint64_t k, double num_std_devs)
Computes lower bound of approximate Clopper-Pearson confidence interval for a binomial proportion.
Definition bounds_binomial_proportions.hpp:113
DataSketches namespace.
Definition binomial_bounds.hpp:38