Class RandomForestModel
Object
org.apache.spark.mllib.tree.model.RandomForestModel
- All Implemented Interfaces:
Serializable
,Saveable
Represents a random forest model.
param: algo algorithm for the ensemble model, either Classification or Regression param: trees tree ensembles
- See Also:
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionscala.Enumeration.Value
algo()
static RandomForestModel
load
(SparkContext sc, String path) static org.apache.spark.internal.Logging.LogStringContext
LogStringContext
(scala.StringContext sc) int
numTrees()
Get number of trees in ensemble.static org.slf4j.Logger
static void
org$apache$spark$internal$Logging$$log__$eq
(org.slf4j.Logger x$1) Java-friendly version oforg.apache.spark.mllib.tree.model.TreeEnsembleModel.predict
.double
Predict values for a single data point using the model trained.Predict values for the given data set.void
save
(SparkContext sc, String path) Save this model to the given path.Print the full model to a string.toString()
Print a summary of the model.int
Get total number of nodes, summed over all trees in the ensemble.trees()
-
Constructor Details
-
RandomForestModel
-
-
Method Details
-
load
- Parameters:
sc
- Spark context used for loading model files.path
- Path specifying the directory to which the model was saved.- Returns:
- Model instance
-
algo
public scala.Enumeration.Value algo() -
trees
-
save
Description copied from interface:Saveable
Save this model to the given path.This saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
The model may be loaded using
Loader.load
. -
org$apache$spark$internal$Logging$$log_
public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_() -
org$apache$spark$internal$Logging$$log__$eq
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) -
LogStringContext
public static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc) -
predict
Predict values for a single data point using the model trained.- Parameters:
features
- array representing a single data point- Returns:
- predicted category from the trained model
-
predict
Predict values for the given data set.- Parameters:
features
- RDD representing data points to be predicted- Returns:
- RDD[Double] where each entry contains the corresponding prediction
-
predict
Java-friendly version oforg.apache.spark.mllib.tree.model.TreeEnsembleModel.predict
.- Parameters:
features
- (undocumented)- Returns:
- (undocumented)
-
toString
Print a summary of the model. -
toDebugString
Print the full model to a string.- Returns:
- (undocumented)
-
numTrees
public int numTrees()Get number of trees in ensemble.- Returns:
- (undocumented)
-
totalNumNodes
public int totalNumNodes()Get total number of nodes, summed over all trees in the ensemble.- Returns:
- (undocumented)
-