class NaiveBayesModel extends ClassificationModel with Serializable with Saveable
Model for Naive Bayes Classifiers.
- Annotations
- @Since("0.9.0")
- Alphabetic
- By Inheritance
- NaiveBayesModel
- Saveable
- ClassificationModel
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val labels: Array[Double]
- Annotations
- @Since("1.0.0")
- val modelType: String
- Annotations
- @Since("1.4.0")
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- val pi: Array[Double]
- Annotations
- @Since("0.9.0")
- def predict(testData: Vector): Double
Predict values for a single data point using the model trained.
Predict values for a single data point using the model trained.
- testData
array representing a single data point
- returns
predicted category from the trained model
- Definition Classes
- NaiveBayesModel → ClassificationModel
- Annotations
- @Since("1.0.0")
- def predict(testData: RDD[Vector]): RDD[Double]
Predict values for the given data set using the model trained.
Predict values for the given data set using the model trained.
- testData
RDD representing data points to be predicted
- returns
an RDD[Double] where each entry contains the corresponding prediction
- Definition Classes
- NaiveBayesModel → ClassificationModel
- Annotations
- @Since("1.0.0")
- def predict(testData: JavaRDD[Vector]): JavaRDD[Double]
Predict values for examples stored in a JavaRDD.
Predict values for examples stored in a JavaRDD.
- testData
JavaRDD representing data points to be predicted
- returns
a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction
- Definition Classes
- ClassificationModel
- Annotations
- @Since("1.0.0")
- def predictProbabilities(testData: Vector): Vector
Predict posterior class probabilities for a single data point using the model trained.
Predict posterior class probabilities for a single data point using the model trained.
- testData
array representing a single data point
- returns
predicted posterior class probabilities from the trained model, in the same order as class labels
- Annotations
- @Since("1.5.0")
- def predictProbabilities(testData: RDD[Vector]): RDD[Vector]
Predict values for the given data set using the model trained.
Predict values for the given data set using the model trained.
- testData
RDD representing data points to be predicted
- returns
an RDD[Vector] where each entry contains the predicted posterior class probabilities, in the same order as class labels
- Annotations
- @Since("1.5.0")
- def save(sc: SparkContext, path: String): Unit
Save this model to the given path.
Save this model to the given path.
This saves:
- human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
The model may be loaded using
Loader.load
.- sc
Spark context used to save model data.
- path
Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.
- Definition Classes
- NaiveBayesModel → Saveable
- Annotations
- @Since("1.3.0")
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val theta: Array[Array[Double]]
- Annotations
- @Since("0.9.0")
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)