ChiSqSelector#
- class pyspark.ml.feature.ChiSqSelector(*, numTopFeatures=50, featuresCol='features', outputCol=None, labelCol='label', selectorType='numTopFeatures', percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05)[source]#
Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label. The selector supports different selection methods: numTopFeatures, percentile, fpr, fdr, fwe.
numTopFeatures chooses a fixed number of top features according to a chi-squared test.
percentile is similar but chooses a fraction of all features instead of a fixed number.
fpr chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection.
fdr uses the Benjamini-Hochberg procedure to choose all features whose false discovery rate is below a threshold.
fwe chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection.
By default, the selection method is numTopFeatures, with the default number of top features set to 50.
Deprecated since version 3.1.0: Use UnivariateFeatureSelector
New in version 2.0.0.
Examples
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame( ... [(Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0), ... (Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0), ... (Vectors.dense([1.0, 0.0, 15.0, 0.1]), 0.0)], ... ["features", "label"]) >>> selector = ChiSqSelector(numTopFeatures=1, outputCol="selectedFeatures") >>> model = selector.fit(df) >>> model.getFeaturesCol() 'features' >>> model.setFeaturesCol("features") ChiSqSelectorModel... >>> model.transform(df).head().selectedFeatures DenseVector([18.0]) >>> model.selectedFeatures [2] >>> chiSqSelectorPath = temp_path + "/chi-sq-selector" >>> selector.save(chiSqSelectorPath) >>> loadedSelector = ChiSqSelector.load(chiSqSelectorPath) >>> loadedSelector.getNumTopFeatures() == selector.getNumTopFeatures() True >>> modelPath = temp_path + "/chi-sq-selector-model" >>> model.save(modelPath) >>> loadedModel = ChiSqSelectorModel.load(modelPath) >>> loadedModel.selectedFeatures == model.selectedFeatures True >>> loadedModel.transform(df).take(1) == model.transform(df).take(1) True
Methods
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
fit
(dataset[, params])Fits a model to the input dataset with optional parameters.
fitMultiple
(dataset, paramMaps)Fits a model to the input dataset for each param map in paramMaps.
getFdr
()Gets the value of fdr or its default value.
Gets the value of featuresCol or its default value.
getFpr
()Gets the value of fpr or its default value.
getFwe
()Gets the value of fwe or its default value.
Gets the value of labelCol or its default value.
Gets the value of numTopFeatures or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
Gets the value of outputCol or its default value.
getParam
(paramName)Gets a param by its name.
Gets the value of percentile or its default value.
Gets the value of selectorType or its default value.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read
()Returns an MLReader instance for this class.
save
(path)Save this ML instance to the given path, a shortcut of 'write().save(path)'.
set
(param, value)Sets a parameter in the embedded param map.
setFdr
(value)Sets the value of
fdr
.setFeaturesCol
(value)Sets the value of
featuresCol
.setFpr
(value)Sets the value of
fpr
.setFwe
(value)Sets the value of
fwe
.setLabelCol
(value)Sets the value of
labelCol
.setNumTopFeatures
(value)Sets the value of
numTopFeatures
.setOutputCol
(value)Sets the value of
outputCol
.setParams
(self, \*[, numTopFeatures, ...])Sets params for this ChiSqSelector.
setPercentile
(value)Sets the value of
percentile
.setSelectorType
(value)Sets the value of
selectorType
.write
()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
- clear(param)#
Clears a param from the param map if it has been explicitly set.
- copy(extra=None)#
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
JavaParams
Copy of this instance
- explainParam(param)#
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams()#
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra=None)#
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
- fit(dataset, params=None)#
Fits a model to the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset.
- paramsdict or list or tuple, optional
an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
- dataset
- Returns
Transformer
or a list ofTransformer
fitted model(s)
- fitMultiple(dataset, paramMaps)#
Fits a model to the input dataset for each param map in paramMaps.
New in version 2.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset.
- paramMaps
collections.abc.Sequence
A Sequence of param maps.
- dataset
- Returns
_FitMultipleIterator
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
- getFdr()#
Gets the value of fdr or its default value.
New in version 2.2.0.
- getFeaturesCol()#
Gets the value of featuresCol or its default value.
- getFpr()#
Gets the value of fpr or its default value.
New in version 2.1.0.
- getFwe()#
Gets the value of fwe or its default value.
New in version 2.2.0.
- getLabelCol()#
Gets the value of labelCol or its default value.
- getNumTopFeatures()#
Gets the value of numTopFeatures or its default value.
New in version 2.0.0.
- getOrDefault(param)#
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets the value of outputCol or its default value.
- getParam(paramName)#
Gets a param by its name.
- getPercentile()#
Gets the value of percentile or its default value.
New in version 2.1.0.
- getSelectorType()#
Gets the value of selectorType or its default value.
New in version 2.1.0.
- hasDefault(param)#
Checks whether a param has a default value.
- hasParam(paramName)#
Tests whether this instance contains a param with a given (string) name.
- isDefined(param)#
Checks whether a param is explicitly set by user or has a default value.
- isSet(param)#
Checks whether a param is explicitly set by user.
- classmethod load(path)#
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path)#
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param, value)#
Sets a parameter in the embedded param map.
- setFdr(value)#
Sets the value of
fdr
. Only applicable when selectorType = “fdr”.New in version 2.2.0.
- setFeaturesCol(value)#
Sets the value of
featuresCol
.
- setFpr(value)#
Sets the value of
fpr
. Only applicable when selectorType = “fpr”.New in version 2.1.0.
- setFwe(value)#
Sets the value of
fwe
. Only applicable when selectorType = “fwe”.New in version 2.2.0.
- setNumTopFeatures(value)#
Sets the value of
numTopFeatures
. Only applicable when selectorType = “numTopFeatures”.New in version 2.0.0.
- setParams(self, \*, numTopFeatures=50, featuresCol="features", outputCol=None, labelCol="label", selectorType="numTopFeatures", percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05)[source]#
Sets params for this ChiSqSelector.
New in version 2.0.0.
- setPercentile(value)#
Sets the value of
percentile
. Only applicable when selectorType = “percentile”.New in version 2.1.0.
- setSelectorType(value)#
Sets the value of
selectorType
.New in version 2.1.0.
- write()#
Returns an MLWriter instance for this ML instance.
Attributes Documentation
- fdr = Param(parent='undefined', name='fdr', doc='The upper bound of the expected false discovery rate.')#
- featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')#
- fpr = Param(parent='undefined', name='fpr', doc='The highest p-value for features to be kept.')#
- fwe = Param(parent='undefined', name='fwe', doc='The upper bound of the expected family-wise error rate.')#
- labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
- numTopFeatures = Param(parent='undefined', name='numTopFeatures', doc='Number of features that selector will select, ordered by ascending p-value. If the number of features is < numTopFeatures, then this will select all features.')#
- outputCol = Param(parent='undefined', name='outputCol', doc='output column name.')#
- params#
Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
- percentile = Param(parent='undefined', name='percentile', doc='Percentile of features that selector will select, ordered by ascending p-value.')#
- selectorType = Param(parent='undefined', name='selectorType', doc='The selector type. Supported options: numTopFeatures (default), percentile, fpr, fdr, fwe.')#
- uid#
A unique id for the object.