pyspark.sql.functions.posexplode_outer#

pyspark.sql.functions.posexplode_outer(col)[source]#

Returns a new row for each element with position in the given array or map. Unlike posexplode, if the array/map is null or empty then the row (null, null) is produced. Uses the default column name pos for position, and col for elements in the array and key and value for elements in the map unless specified otherwise.

New in version 2.3.0.

Changed in version 3.4.0: Supports Spark Connect.

Parameters
colColumn or column name

target column to work on.

Returns
Column

one row per array item or map key value including positions as a separate column.

Examples

Example 1: Using an array column

>>> from pyspark.sql import functions as sf
>>> df = spark.sql('SELECT * FROM VALUES (1,ARRAY(1,2,3,NULL)), (2,ARRAY()), (3,NULL) AS t(i,a)')
>>> df.select('*', sf.posexplode_outer('a')).show()
+---+---------------+----+----+
|  i|              a| pos| col|
+---+---------------+----+----+
|  1|[1, 2, 3, NULL]|   0|   1|
|  1|[1, 2, 3, NULL]|   1|   2|
|  1|[1, 2, 3, NULL]|   2|   3|
|  1|[1, 2, 3, NULL]|   3|NULL|
|  2|             []|NULL|NULL|
|  3|           NULL|NULL|NULL|
+---+---------------+----+----+

Example 2: Using a map column

>>> from pyspark.sql import functions as sf
>>> df = spark.sql('SELECT * FROM VALUES (1,MAP(1,2,3,4,5,NULL)), (2,MAP()), (3,NULL) AS t(i,m)')
>>> df.select('*', sf.posexplode_outer('m')).show(truncate=False)
+---+---------------------------+----+----+-----+
|i  |m                          |pos |key |value|
+---+---------------------------+----+----+-----+
|1  |{1 -> 2, 3 -> 4, 5 -> NULL}|0   |1   |2    |
|1  |{1 -> 2, 3 -> 4, 5 -> NULL}|1   |3   |4    |
|1  |{1 -> 2, 3 -> 4, 5 -> NULL}|2   |5   |NULL |
|2  |{}                         |NULL|NULL|NULL |
|3  |NULL                       |NULL|NULL|NULL |
+---+---------------------------+----+----+-----+