pyspark.pandas.DataFrame.all#
- DataFrame.all(axis=0, bool_only=None, skipna=True)[source]#
- Return whether all elements are True. - Returns True unless there is at least one element within a series that is False or equivalent (e.g. zero or empty) - Parameters
- axis{0 or ‘index’}, default 0
- Indicate which axis or axes should be reduced. - 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels. 
 
- bool_onlybool, default None
- Include only boolean columns. If None, will attempt to use everything, then use only boolean data. 
- skipnaboolean, default True
- Exclude NA values, such as None or numpy.NaN. If an entire row/column is NA values and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, numpy.NaNs are treated as True because these are not equal to zero, Nones are treated as False. 
 
- Returns
- Series
 
 - Examples - Create a dataframe from a dictionary. - >>> df = ps.DataFrame({ ... 'col1': [True, True, True], ... 'col2': [True, False, False], ... 'col3': [0, 0, 0], ... 'col4': [1, 2, 3], ... 'col5': [True, True, None], ... 'col6': [True, False, None]}, ... columns=['col1', 'col2', 'col3', 'col4', 'col5', 'col6']) - Default behavior checks if column-wise values all return True. - >>> df.all() col1 True col2 False col3 False col4 True col5 True col6 False dtype: bool - Include NA values when set skipna=False. - >>> df[['col5', 'col6']].all(skipna=False) col5 False col6 False dtype: bool - Include only boolean columns when set bool_only=True. - >>> df.all(bool_only=True) col1 True col2 False dtype: bool