pyspark.sql.functions.asc#
- pyspark.sql.functions.asc(col)[source]#
Returns a sort expression for the target column in ascending order. This function is used in sort and orderBy functions.
New in version 1.3.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- col
Column
or column name Target column to sort by in the ascending order.
- col
- Returns
Column
The column specifying the sort order.
Examples
Example 1: Sort DataFrame by ‘id’ column in ascending order.
>>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(4, 'B'), (3, 'A'), (2, 'C')], ['id', 'value']) >>> df.sort(sf.asc("id")).show() +---+-----+ | id|value| +---+-----+ | 2| C| | 3| A| | 4| B| +---+-----+
Example 2: Use asc in orderBy function to sort the DataFrame.
>>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(4, 'B'), (3, 'A'), (2, 'C')], ['id', 'value']) >>> df.orderBy(sf.asc("value")).show() +---+-----+ | id|value| +---+-----+ | 3| A| | 4| B| | 2| C| +---+-----+
Example 3: Combine asc with desc to sort by multiple columns.
>>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame( ... [(2, 'A', 4), (1, 'B', 3), (3, 'A', 2)], ... ['id', 'group', 'value']) >>> df.sort(sf.asc("group"), sf.desc("value")).show() +---+-----+-----+ | id|group|value| +---+-----+-----+ | 2| A| 4| | 3| A| 2| | 1| B| 3| +---+-----+-----+
Example 4: Implement asc from column expression.
>>> df = spark.createDataFrame([(4, 'B'), (3, 'A'), (2, 'C')], ['id', 'value']) >>> df.sort(df.id.asc()).show() +---+-----+ | id|value| +---+-----+ | 2| C| | 3| A| | 4| B| +---+-----+