pyspark.pandas.DataFrame.reindex#
- DataFrame.reindex(labels=None, index=None, columns=None, axis=None, copy=True, fill_value=None)[source]#
- Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and - copy=False.- Parameters
- labels: array-like, optional
- New labels / index to conform the axis specified by ‘axis’ to. 
- index, columns: array-like, optional
- New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data 
- axis: int or str, optional
- Axis to target. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). 
- copybool, default True
- Return a new object, even if the passed indexes are the same. 
- fill_valuescalar, default np.nan
- Value to use for missing values. Defaults to NaN, but can be any “compatible” value. 
 
- Returns
- DataFrame with changed index.
 
 - See also - DataFrame.set_index
- Set row labels. 
- DataFrame.reset_index
- Remove row labels or move them to new columns. 
 - Examples - DataFrame.reindexsupports two calling conventions- (index=index_labels, columns=column_labels, ...)
- (labels, axis={'index', 'columns'}, ...)
 - We highly recommend using keyword arguments to clarify your intent. - Create a dataframe with some fictional data. - >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = ps.DataFrame({ ... 'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index, ... columns=['http_status', 'response_time']) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 - Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned - NaN.- >>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index).sort_index() http_status response_time Chrome 200.0 0.02 Comodo Dragon NaN NaN IE10 404.0 0.08 Iceweasel NaN NaN Safari 404.0 0.07 - We can fill in the missing values by passing a value to the keyword - fill_value.- >>> df.reindex(new_index, fill_value=0, copy=False).sort_index() http_status response_time Chrome 200 0.02 Comodo Dragon 0 0.00 IE10 404 0.08 Iceweasel 0 0.00 Safari 404 0.07 - We can also reindex the columns. - >>> df.reindex(columns=['http_status', 'user_agent']).sort_index() http_status user_agent Chrome 200 NaN Firefox 200 NaN IE10 404 NaN Konqueror 301 NaN Safari 404 NaN - Or we can use “axis-style” keyword arguments - >>> df.reindex(['http_status', 'user_agent'], axis="columns").sort_index() http_status user_agent Chrome 200 NaN Firefox 200 NaN IE10 404 NaN Konqueror 301 NaN Safari 404 NaN - To further illustrate the filling functionality in - reindex, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).- >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = ps.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2.sort_index() prices 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 - Suppose we decide to expand the dataframe to cover a wider date range. - >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2).sort_index() prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN