pyspark.sql.tvf.TableValuedFunction.variant_explode#
- TableValuedFunction.variant_explode(input)[source]#
Separates a variant object/array into multiple rows containing its fields/elements.
Its result schema is struct<pos int, key string, value variant>. pos is the position of the field/element in its parent object/array, and value is the field/element value. key is the field name when exploding a variant object, or is NULL when exploding a variant array. It ignores any input that is not a variant array/object, including SQL NULL, variant null, and any other variant values.
New in version 4.0.0.
- Parameters
- input
Column
input column of values to explode.
- input
- Returns
DataFrame
Examples
Example 1: Using variant_explode with a variant array
>>> import pyspark.sql.functions as sf >>> spark.tvf.variant_explode(sf.parse_json(sf.lit('["hello", "world"]'))).show() +---+----+-------+ |pos| key| value| +---+----+-------+ | 0|NULL|"hello"| | 1|NULL|"world"| +---+----+-------+
Example 2: Using variant_explode with a variant object
>>> import pyspark.sql.functions as sf >>> spark.tvf.variant_explode(sf.parse_json(sf.lit('{"a": true, "b": 3.14}'))).show() +---+---+-----+ |pos|key|value| +---+---+-----+ | 0| a| true| | 1| b| 3.14| +---+---+-----+
Example 3: Using variant_explode with an empty variant array
>>> import pyspark.sql.functions as sf >>> spark.tvf.variant_explode(sf.parse_json(sf.lit('[]'))).show() +---+---+-----+ |pos|key|value| +---+---+-----+ +---+---+-----+
Example 4: Using variant_explode with an empty variant object
>>> import pyspark.sql.functions as sf >>> spark.tvf.variant_explode(sf.parse_json(sf.lit('{}'))).show() +---+---+-----+ |pos|key|value| +---+---+-----+ +---+---+-----+