pyspark.pandas.groupby.GroupBy.first#
- GroupBy.first(numeric_only=False, min_count=- 1)[source]#
Compute first of group values.
New in version 3.3.0.
- Parameters
- numeric_onlybool, default False
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data.
New in version 3.4.0.
- min_countint, default -1
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.New in version 3.4.0.
Examples
>>> df = ps.DataFrame({"A": [1, 2, 1, 2], "B": [True, False, False, True], ... "C": [3, 3, 4, 4], "D": ["a", "b", "a", "a"]}) >>> df A B C D 0 1 True 3 a 1 2 False 3 b 2 1 False 4 a 3 2 True 4 a
>>> df.groupby("A").first().sort_index() B C D A 1 True 3 a 2 False 3 b
Include only float, int, boolean columns when set numeric_only True.
>>> df.groupby("A").first(numeric_only=True).sort_index() B C A 1 True 3 2 False 3
>>> df.groupby("D").first().sort_index() A B C D a 1 True 3 b 2 False 3
>>> df.groupby("D").first(min_count=3).sort_index() A B C D a 1.0 True 3.0 b NaN None NaN