pyspark.pandas.Series.plot.kde#
- plot.kde(bw_method=None, ind=None, **kwargs)#
Generate Kernel Density Estimate plot using Gaussian kernels.
In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination.
- Parameters
- bw_methodscalar
The method used to calculate the estimator bandwidth. See KernelDensity in PySpark for more information.
- indNumPy array or integer, optional
Evaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If ind is a NumPy array, the KDE is evaluated at the points passed. If ind is an integer, ind number of equally spaced points are used.
- **kwargsoptional
Keyword arguments to pass on to
pandas-on-Spark.Series.plot()
.
- Returns
plotly.graph_objs.Figure
Return an custom object when
backend!=plotly
. Return an ndarray whensubplots=True
(matplotlib-only).
Examples
A scalar bandwidth should be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting:
>>> s = ps.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> s.plot.kde(bw_method=0.3)
>>> s = ps.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> s.plot.kde(bw_method=3)
The ind parameter determines the evaluation points for the plot of the estimated KDF:
>>> s = ps.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> s.plot.kde(ind=[1, 2, 3, 4, 5], bw_method=0.3)
For DataFrame, it works in the same way as Series:
>>> df = ps.DataFrame({ ... 'x': [1, 2, 2.5, 3, 3.5, 4, 5], ... 'y': [4, 4, 4.5, 5, 5.5, 6, 6], ... }) >>> df.plot.kde(bw_method=0.3)
>>> df = ps.DataFrame({ ... 'x': [1, 2, 2.5, 3, 3.5, 4, 5], ... 'y': [4, 4, 4.5, 5, 5.5, 6, 6], ... }) >>> df.plot.kde(bw_method=3)
>>> df = ps.DataFrame({ ... 'x': [1, 2, 2.5, 3, 3.5, 4, 5], ... 'y': [4, 4, 4.5, 5, 5.5, 6, 6], ... }) >>> df.plot.kde(ind=[1, 2, 3, 4, 5, 6], bw_method=0.3)